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1. Foreword 

We proposed to use and adapt an advanced semi-stochastic algorithm for constrained multi-objective optimization and 
combine it with experimental testing and verification to determine optimum concentrations of alloying elements in heat-
resistant and corrosion-resistant H-Series austenitic stainless steel alloys that will simultaneously maximize a number of 
alloy’s mechanical and corrosion properties.  The proposed research was expected to result in a rigorous tool for the 
design of high-strength and high-temperature steels and other types of alloys that are unattainable by any means existing 
at the present time.  Such a materials design tool was expected to reduce or minimize the need for the addition of 
expensive elements such as Cr, Ni, Co, Nb, Ti, V, etc. and still obtain the optimum properties of the alloy.  The proposed 
program is also consistent with the objectives of the BAA solicitation in that it directly addresses: (a) new class of alloys 
for high-temperature strength, corrosion, and thermal fatigue resistance; (b) application of combinatorial methods for rapid 
screening of materials for industrial applications and/or materials property optimization; and (c) acquisition of 
thermophysical property data needed for materials processing and industrial application, a clear path to solution of major 
problems in modeling, process simulation, and control in design of new materials.  Proof-of-the concept objectives were 
met during the August 15, 2002 – August 31, 2003 period of this grant as it is described in more detail in this final report. 
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4. Statement of the Problem Studied 
We proposed to use and adapt an advanced semi-stochastic algorithm for constrained multi-objective optimization 

and combine it with experimental testing and verification to determine optimum concentrations of alloying elements in 
heat-resistant and corrosion-resistant H-Series austenitic stainless steel alloys that will simultaneously maximize a 
number of alloy’s mechanical and corrosion properties.  Such a tool is expected to minimize the need for the addition of 
expensive elements such as Cr, Ni, Co, Nb, Ti, V, etc. and still obtain the optimum properties needed to design the 
components.  To reduce the computing time significantly, and to assure that globally optimal solutions will be found, we 
propose to develop a multi-level and multi-objective constrained optimization methodology that is a modified version of a 
method of Indirect Optimization based upon Self-Organization (IOSO) and evolutionary simulation principles.  The 
optimization algorithm allows for a finite number of non-reactive ingredients in the alloy to be optimized so that a finite 
number of physical properties of the alloy is either minimized or maximized, while satisfying a finite number of equality and 
inequality constraints.  The multi-objective optimization algorithm is of a semi-stochastic type incorporating certain aspects 
of a selective search on a continuously updated multi-dimensional response surface.  Both weighted linear combination of 
several objectives and true multi-objective formulation options creating Pareto fronts will be utilized in the algorithm.   

The main benefits of this algorithm are its outstanding reliability in avoiding local minimums, its computational speed, 
and a significantly reduced number of required experimentally evaluated alloy samples as compared to more traditional 
gradient-based and genetic optimization algorithms.  Furthermore, the self-adapting response surface formulation used in 
this project allows for incorporation of realistic non-smooth variations of experimentally obtained data and for accurate 
interpolation of such data.  We proposed to use a combination of analysis and experimental tools with different levels of 
sophistication in the multi-objective optimization of complex alloy systems.  Experimentally preparing samples of those 
alloys and testing them will verify the Fe-Cr-Ni alloy compositions determined from the multi-objective optimization.  At the 
same time, the proposed approach is expected to minimize the number of required time-consuming experimental 
evaluations.  This optimization methodology is also scalable and capable of handling dozens of design variables, dozens 
of objectives and constraints, and performing on commodity processors.   

The proposed research, although applicable to optimization of composition of arbitrary alloys, will in this project result 
in a rigorous tool for the design of high-strength corrosion-resistant H-Series steels unattainable by any means existing at 
the present time.  The final outcome of the project will be the ability of H-Series stainless steel producers and users to 
predict either the alloy compositions for desired set of thermo-mechanical properties.   



 
5. Summary of the Most Important Results 

5.1 Background 
Alloy design for critical aero-engine components such as turbine blades and discs is a difficult, time-consuming and 

expensive process.  The development period prior to application in an engine is typically of the order of ten years. 
Airframe manufacturers usually announce a new design only five years prior to flight certification.  This leaves the engine 
designers only half the current period necessary for materials development. 

Nickel-based super-alloys are essentially mixtures of γ ′  precipitates (L12 structure) in a disordered γ  (cubic-close 

packed structure) matrix.  Despite decades of research on the γγ ′  nickel base super-alloy system, new alloys have in 
the past been investigated by making as many as hundreds of different variants.  Each of these has to be cast or made 
into powder form, thermo-mechanically processed, assessed for the presence of deleterious phases and for 
processability, and tested on a laboratory scale.  There is typically a further stage of optimization based on personal 
experience and intuition before a small selection of alloys is finally tested to commercial standards.  Thus, the 
development of new nickel alloys for aero-engine applications is a difficult task, frequently achieved by trial and 
experience.  Predictive modeling and mathematical optimization, at any stage of this empirical alloy design procedure, 
would obviously reduce the cost and the time involved in the development of new materials, as well as produce alloys with 
superior performance.   

The purpose of the proposed research was to enable a significant proportion of the development procedure to be 
done by computation by using the power of true mathematical evolutionary optimization techniques in their direct and 
inverse modes.   

 
5.1.1 The Cambridge University Effort 

Probably the most prominent center for research activity in certain aspects of predictive modeling and regression 
analysis in super-alloys is at Cambridge University in the U.K. (Jones, MacKay and Bhadeshia, 1995; Fujii, MacKay and 
Bhadeshia, 1996; Jones and MacKay, 1996; Schooling and Reed, 1996; MacKay, 1997; Narayan et al., 1998; Singh et 
al., 1998; Yoshitake et al., 1998).  Their approach is to use artificial neural network logic for a non-linear regression 
analysis where the input data, , are multiplied by weights, but the sum of all these products forms the argument of a 

hyperbolic tangent.  The output, y, is therefore a non-linear function of , the function usually chosen being the 
hyperbolic tangent because of its flexibility.  Altering the weights can vary the exact shape of the hyperbolic tangent.  
Further degrees of non-linearity can be introduced by combining several of these hyperbolic tangents, so that the neural 
network method is able to capture almost arbitrarily non-linear relationships.  For example, it is well known that the effect 
of chromium on the microstructure of steels is quite different at large concentrations than in dilute alloys.  Ordinary 
regression analysis cannot cope with such changes in the form of relationships.   

jx

jx

Using artificial neural networks, the Cambridge group has successfully addressed solid solution strengthening, tensile 
properties, fatigue, creep, lattice misfit in the context of nickel-base super-alloys, and has applied the method to other 
materials and processes.  A large number of quantitative models have been produced by the Cambridge group, dealing 
with the microstructure and mechanical properties of nickel-base super-alloys.  This is the first time it has become 
possible to estimate properties as complex as the fatigue crack growth rate as a function of a very large number of 
variables.  The models have been tested successfully against the known principles of physical metallurgy.  They have 
been used already, both in reducing the scale of experimental programs and in identifying regimes where experiments are 
essential. 
 
5.1.2 The Artificial Neural Network 

Many mechanical properties are so complex in their dependence on material characteristics that there are no theories 
available to make quantitative predictions of the kind necessary in engineering design.  The neural network method is 
ideal in such circumstances since it thrives in complexity, and when combined with experience from physical metallurgy, 
can be enormously useful both in the design of new materials and in the definition of critical experiments. 

Neural networks are parameterized non-linear models used for empirical regression and classification modeling.  
Stated simply, this represents a method for the quantitative recognition of patterns in data, without any a priori 
specification of the nature of the relationship between the input and output variables.  They can model relationships of 
almost arbitrary complexity. 

The outcome of neural network training is a set of coefficients (called weights) and a specification of the functions that 
in combination with the weights relate the input to the output. The training process involves a search for the optimum 
non-linear relationship between the inputs and the outputs and is computer intensive.  Once the network is trained, 
estimation of the outputs for any given inputs is very rapid. 

 3

There are methods, such as that of MacKay (1997), which implement a Bayesian framework on the neural network.  
This helps in the determination of the relevance of individual inputs. Furthermore, the error bars then depend on the 
specific position in input space, reducing the dangers of extrapolation and interpolation.  The Cambridge group has found 
that this method is capable of revealing interesting metallurgical trends. 



The yield and ultimate tensile strength of nickel-base super-alloys with γγ ′  microstructures has been modeled 
(Jones and MacKay, 1996; Jones, MacKay and Bhadeshia, 1995) using the neural network method, as a function of the 
Ni, Cr, Co, Mo, W, Ta, Nb, Al, Ti, Fe, Mn, Si, C, B, and Zr concentrations, and of the test temperature.  The analysis was 
based on data selected from the published literature.  The trained models were subjected to a variety of metallurgical 
tests.  As expected, the test temperature (in the range 25-1100 °C) was found to be the most significant variable 
influencing the tensile properties, both via the temperature dependence of strengthening mechanisms and due to 
variations in the γ ′  fraction with temperature.  Since precipitation hardening is a dominant strengthening mechanism, it 
was encouraging that the network recognized Ti, Al and Nb to be key factors controlling the strength. The physical 
significance of the neural network was apparent in all the interrogations we performed. 

A further revelation from the neural network analysis came from the error estimates, which demonstrated clearly that 
there are great uncertainties in the experimental data on the effect of large concentrations of molybdenum on the tensile 
properties.  This has identified a region where careful experiments are needed since molybdenum is known to have a 
large influence on the γγ ′  lattice misfit. 

The Cambridge group methodology for tensile properties has already been exploited in Rolls-Royce to reduce the 
number of variants involved in experimental alloy design programs. 

The creep rupture life of nickel base super-alloys has been modeled as a function of 42 variables including Cr, Co, C, 
Si, Mn, P, S, Mo, Cu, Ti, Al, B, N, Nb, Ta, Zr, Fe, W, V, Hf, Re, Mg, La and ThO2 (Fujii et al., 1998).  Other variables 
included four heat treatment steps (characterized by temperature, duration and cooling rate), the sample shape and the 
solidification method.  The results have been interpreted using physical metallurgy principles where this is possible, and 
the model is currently being used in the Technology Foresight Program at Cambridge University. 

The treatment of iron-base super-alloys using both neural network and physical modeling is described by Badmos, 
Bhadeshia and MacKay (1998) and by Badmos and Bhadeshia (1997).  A description of the modeling of constitutive 
relations obtained by torsion testing is offered by Narayan et al., (1998).  The modeling of steel plate processing using 
more than 100 variables is given by Singh et al. (1998).  A lot of the work and data are available from the materials 
algorithms project website  http: / /www.msm cam. ac. uk/map/mapmain. html 

Neural network models in many ways mimic human experience and are capable of learning or being trained to 
recognize the correct science rather than nonsensical trends.  Unlike human experience, these models can be transferred 
readily between generations and steadily developed to make design tools of lasting value.  These models also impose a 
discipline on the digital storage of valuable experimental data, which may otherwise be lost with the passage of time. 

A potential difficulty with the use of regression methods is the possibility of over-fitting data.  For example, it is 
possible to produce a neural network model for a completely random set of data.  To avoid this difficulty, the experimental 
data can be divided into two sets, a training dataset and a test dataset.  The model is produced using only the training 
data.  The test data are then used to check that the model behaves itself when presented with previously unseen data. 

In addition, artificial neural networks, once fully trained, are very efficient and accurate interpolating algorithms for any 
multi-parameter function.  However, this does not mean that the neural networks are automatically efficient and accurate 
search algorithms or extrapolation algorithms.  These, they are not.   

Therefore, it is important to understand a need for a mathematically sound multi-objective stochastic optimization 
algorithms that are capable of finding the global minimum and confidently search outside a given initial data base. 

 
5.1.3 Multi-objective Optimization: Background 

This proposal deals with the industry-wide need for improving material property performance for the applications that 
they are currently used for and to increase their upper use temperature, strength, and corrosion resistance.  The proposed 
project takes the new approach of using stochastic optimization algorithm for optimizing alloy properties with a minimum 
number of experimental evaluations of the candidate alloys.  This approach has the potential of identifying new 
compositions that cannot be identified without carrying out an unacceptably large number of experiments.  Furthermore, 
this approach has the potential for creating and designing alloys for each application, thereby maximizing their utilization 
at reduced cost. 

The key to the success of the proposed research is the robustness, accuracy, and efficiency of the multi-objective 
constrained optimization algorithm.  There are only a few commercially available general-purpose optimization software 
packages.  Currently, the most popular commercially available general-purpose optimization software in the United States 
is iSIGHT (1995).  However, these software packages predominantly use a variety of standard gradient-based 
optimization algorithms which are known to be unreliable because of their tendency to terminate in the nearest feasible 
minimum instead of finding a global optimum.  Moreover, these optimizers can perform only optimization of a weighted 
linear combination of objective functions.  This formulation does not provide a true multi-objective optimization capability, 
that is, each individual objective is not fully maximized.  Furthermore, these optimizers require an extremely large number 
of objective function (mechanical and corrosion properties of alloys) evaluations, which makes the total number of 
experimental evaluations unacceptably large.   

The U.S. domestic industry is most probably aware of these drawbacks of the commercially available optimization 
software.  Some of them are also becoming aware of the neural network approach to alloy design as practiced at 
Cambridge University.  However, for the most part they are not aware of the latest developments in the area of stochastic 
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truly multi-objective constrained optimization since these methods have not been commercialized and have not been 
demonstrated in this field of application.   

Our proposed research is based on the use and a special adaptation of a new stochastic optimization algorithm 
specifically for the task of optimizing properties of alloys while minimizing the number of experimental evaluations of the 
candidate alloys.   

With the continuing growth of computing resources available, the attention of design engineers has been rapidly 
shifting from the use of repetitive computational analysis, personal experience, and intuition towards a reliable and 
economical mathematically based optimization algorithms.  This trend has exposed the practical limitations of traditional 
gradient based optimization approaches that easily terminate in a local minimum, can usually produce only single-
objective optimized solutions, and require that the objective function satisfies continuity and derivability conditions.  These 
facts, together with the growing need for the multi-disciplinary and multi-objective approach to design with a large number 
of design variables, resulted in an increased interest in the use of various versions of hybrid (Dulikravich et al., 1999; 
Martin and Dulikravich, 2001), semi-stochastic (Poloni et al., 1999; Dennis et al., 2000; Dennis and Dulikravich, 2001), 
and stochastic (Egorov, 1992a, 1993; Egorov and Kretinin, 1993, 1996; Egorov et al., 1999b; Dulikravich et al., 2003; 
Dennis et al. 2003a; 2003b) optimization algorithms.  It should be pointed out that including more objectives in the 
optimization process often has similar effects on the overall optimization effort required as including more constraints 
especially if these constraints are incorporated as penalty functions.   

Multi-objective optimization algorithms based on a genetic algorithm have been successfully applied in a number of 
engineering disciplines.  However, for a large number of design variables and objective functions that need to be 
extremized simultaneously, this approach becomes progressively too time consuming and unreliable for practical 
applications in industry.   

The multi-objective optimization problem maximizes a vector of n objective functions 
 
max  Fi( X )          for i = 1, ... n (1) 
 
subject to a vector of inequality constraints 
 
gj( X )  0           for j = 1, ... m (2) ≤
 
and a vector of equality constraints 
 
hq( X ) = 0          for q = 1, ... k (3) 
 
In general, the solution of this problem is not unique.  With the introduction of the Pareto dominance concept the 

possible solutions are divided in two subgroups: the dominated and the non-dominated.  The solutions belonging to the 
second group are the "efficient" solutions, that is, the ones for which it is not possible to improve any individual objective 
without deteriorating the values of at least some of the remaining objectives.   

In formal terms, in case of a maximization problem, it is possible to write that the solution X  dominates the solution 
Y  if the following relation is true. 

 
))Y(F)X(F:j())Y(F)X(iF(YX jjiiP >∃∩≥∀⇔>  (4) 

 
Classical gradient-based optimization algorithms are capable, under strict continuity and derivability hypotheses, of 

finding the optimal value only in the case of a single objective.  For these algorithms, the problem of finding the group of 
non-dominated solutions (the Pareto front) is reduced to several single objective optimizations where the objective 
becomes a weighted combination of the objectives called utility function. 

The proposed project takes a new approach of using stochastic optimization algorithm for optimizing alloy properties 
with minimum number of experimental evaluations of the candidate alloys.  The proposed approach has the potential of 
identifying new compositions that cannot be identified without carrying out thousands of experiments.  Furthermore, the 
approach has the potential for creating and designing alloys for each application, thereby maximizing their utilization at 
reduced cost. 

The key to the success of the proposed research is the robustness, accuracy, and efficiency of the proposed multi-
objective constrained optimization algorithm.  There are only a few commercially available general-purpose optimization 
software packages.  They all use almost exclusively a variety of standard gradient-based optimization algorithms, which 
are known to be unreliable because of their tendency to terminate in the nearest feasible minimum instead of finding a 
global optimum.  Moreover, these optimizers can perform only optimization of a weighted linear combination of objective 
functions.  This formulation does not provide a true multi-objective optimization capability, that is, each individual objective 
is not fully maximized.  These optimizers require an extremely large number of objective function (mechanical and 
corrosion properties of alloys) evaluations, which makes the total number of experimental evaluations unacceptably large.   
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However, semi-stochastic truly multi-objective constrained optimization algorithms have not been commercialized yet 
and have not been demonstrated in this field of application.  The proposed research is based on the use and a special 
adaptation of a new stochastic optimization algorithm specifically for the task of optimizing properties of alloys while 
minimizing the number of experimental evaluations of the candidate alloys.  The proposed multi-objective optimization 
algorithm is of a semi-stochastic type incorporating certain aspects of a selective search on a continuously updated multi-
dimensional response surface.  Both weighted linear combination of several objectives and true multi-objective 
formulation options creating Pareto fronts are incorporated in the algorithm. The main benefits of this algorithm are its 
outstanding reliability in avoiding local minimums, its computational speed, and a significantly reduced number of required 
experimentally evaluated alloy samples as compared to more traditional semi-stochastic optimizers like genetic 
algorithms.  Furthermore, the self-adapting response surface formulation used in this project allows for incorporation of 
realistic non-smooth variations of experimentally obtained data and allows for accurate interpolation of such data.   
 
5.1.4 Response Surface and Self-Organization Concepts 

Our approach to the MDO concept is based on the widespread application of response surface technique, based upon 
the original approximation concept, within the frameworks of which we adaptively use global and middle-range multi-point 
approximation.  One of the advantages of the proposed approach is the possibility of ensuring good approximating 
capabilities using minimum amount of available information.  This possibility is based on self-organization and 
evolutionary modeling concepts (Egorov, 1998).  During the approximation, the approximation function structure is being 
evolutionarily changed, so that it allows successful approximation of the optimized functions and constraints having 
sufficiently complicated topology.  The obtained approximation functions can be used by multi-level MDO procedures with 
the adaptive change of simulation level within both a single and multiple disciplines of object analysis, and also for the 
solution of their interaction problems. 

With reference to a particular problem of the creation of an alloy with desirable properties, there will inevitably arise a 
problem of constraints that need to be specified on the objective functions.  These constraints are absent in a more 
general multi-objective optimization statement.  Such objective constraints should be set by the user (expert) and could be 
allowed to vary during the solution process.  For example, a minimum acceptable value for the Young’s modulus of 
elasticity could be specified as an inequality constraint.  Or, a maximum acceptable percentage for each of the most 
expensive ingredients in the alloy could be specified as a cost objective constraint.  Also, the total acceptable 
manufacturing cost of an alloy could be specified as an equality constraint.  

The problem of search for Pareto - optimum solutions set in the multi-objective optimization while varying chemical 
composition of an alloy would be an unacceptably labor-intensive process.  This is because of an extremely large number 
of alloy compositions that would need to be created and because several of the properties of each of these alloys would 
have to be evaluated experimentally.  In this case, we can speak only about the creation of some rather extensive 
database including the information on various properties of alloys for various combinations of a chemical structure.  Such 
a database could be used for the solution of particular problems aimed at the creation of alloys with desirable properties. 

Instead, we propose to use IOSO multi-objective optimization (Egorov et al., 1999a, 1999b; Dennis et al., 2000a) to 
determine alloy compositions offering optimum properties of alloys. 

Unfortunately, such problems, as a rule, are difficult to formalize at the initial stage, since the user does not know 
initially what values of some objectives could be reached and how the remaining objectives will vary.  That is, the user has 
very little if any a priori knowledge of objective function space topology. 

For example, for the solution of an actual problem in the car industry with 6 variables we needed nearly 60 
experiments when using a basic IOSO algorithm.  However, for optimization of the classical Rosenbrock test function, 
having only 2 variables, it was necessary to perform almost 300 objective function evaluations.  Hence, it is very difficult to 
predict the number of experiments required in the optimization application proposed here.  

Therefore, it seems, that such problems of optimization can be solved only in an interactive mode, when the user 
during the solution can change both objective constraints and objective functions.  Actually, in this case one can speak 
about optimally controlled experiments.  Let us consider several different scenarios for the solution of optimization 
problem for these conditions. 

The first approach is to perform a general multi-objective optimization of the material properties. 
Within the framework of this strategy we are to solve the multi-objective optimization problem (to find the Pareto set) 

using the general IOSO algorithm.  This strategy is the most accurate, but it requires a very large number of experiments. 
The second approach is an interactive step-by-step optimization of the material properties.  The first step of this 

strategy is to create an initial plan of experiments.  This involves formulation of a single (hybrid) optimization objective by 
the user.  This objective may be the convolution of particular objectives with different weight coefficients assigned to each 
of them.  Then, one optimization step is needed to minimize this composite objective.  The result of this strategy is the 
single, not Pareto-set, solution.  However, during such relatively efficient quasi multi-objective optimization process we 
can accumulate the information about the particular objectives and construct progressively more accurate response 
surface models. 

Thus, in order to develop and realize the most effective optimization strategies, both of the first and the second kind, 
we have to perform a thorough preliminary search for the classes of base functions that will be able to construct the most 
accurate response surface models.   



However, the number of experiments that is necessary for true multi-objective optimization problem solution depends 
not only on the dimensionality of the problem (the number of ingredient species in an alloy); it also depends to a 
considerable degree on the topologies of the object functions.  

 
5.1.5 Summary of IOSO Algorithm 

Each iteration of IOSO consists of two steps. The first step is the creation of an approximation of the objective 
function(s).  Each iteration in this step represents a decomposition of the initial approximation function into a set of simple 
approximation functions so that the final response function is a multi-level graph.   

The second step is the optimization of this approximation function. This approach allows for corrective updates of the 
structure and the parameters of the response surface approximation.  The distinctive feature of this approach is an 
extremely low number of trial points to initialize the algorithm.   

The obtained response functions are used in the multi-level optimization while adaptively utilizing various single and 
multiple discipline analysis tools that differ in their level of sophistication.  During the process of each iteration of IOSO, 
the optimization of the response function is performed only within the current search area.  

This step is followed by a direct call to the mathematical analysis model or an actual experimental evaluation for the 
obtained point.  During the IOSO operation, the information concerning the behavior of the objective function in the vicinity 
of the extremum is stored, and the response function is made more accurate only for this search area.  While proceeding 
from one iteration to the next, the following steps are carried out: modification of the experiment plan; adaptive selection of 
current extremum search area; choice of the response function type (global or middle-range); transformation of the 
response function; modification of both parameters and structure of the optimization algorithms; and, if necessary, 
selection of new promising points within the researched area.  Thus, during each iteration, a series of approximation 
functions for a particular objective of optimization is built.  These functions differ from each other according to both 
structure and definition range.  The subsequent optimization of these approximation functions allows us to determine a set 
of vectors of optimized variables. 

During this work (Dulikravich, Egorov, Sikka and Muralidharan, 2003) algorithms of artificial neural networks (ANN) 
were used that utilized radial-basis functions modified in order to build the response surfaces. The modifications consisted 
in the selection of ANN parameters at the stage of their training that are based on two criteria: minimal curvature of 
response surface, and provision of the best predictive properties for given subset of test points inibest WW ∈ .  Each 
iteration of alloy composition multi-objective optimization technique involves the following steps: 

1. Building and training ANN1 for a given set of test points proceeding from the requirement inibest WW = . 
2. Conducting multi-objective optimization with the use of ANN1 and obtaining a specified number of Pareto optimal 

solutions P1.  
3. Determining a subset of test points Wbest that are maximally close to points P1 in the space of variable parameters.  
4. Training ANN2 proceeding from the requirement to provide the best predictive properties for obtained subset of 

test points .  inibest WW ∈
5. Conducting multi-objective optimization with the use of ANN2 and obtaining a set of Pareto-optimal solutions P2. 

In general, the database contains information on experimentally obtained alloy properties compiled from different sources 
and obtained under different experimental conditions. As a result, for alloys with the same chemical compositions, there 
can be considerable differences of measured properties. These differences can be explained as errors due to the 
particular conditions existing during the experiments (measurement errors), and by the effect of certain operating 
conditions (for example, thermal condition of alloy making). Unless operating conditions are quantified numerically, their 
influence is regarded as an additional chance factor. In its simplified form the methodology can be presented as the 
following set of actions:  

1. Formulation of optimization task, that is, selection of variable parameters, definition of optimization objectives and 
constraints, and setting initial (preliminary) ranges of variable parameters variations.   

2. Preliminary reduction of the experimental database. At this stage the points meeting optimization task statement 
are picked up from the database so that alloys having chemical composition outside the chosen set of variable 
parameters are rejected. Alloys for which there is no data for at least one optimization objective are rejected. In 
addition, alloys with chemical compositions outside the set range of variable parameters are also rejected.  

3. Final reduction of the experimental database. Since accuracy of the building of response surfaces substantially 
depends on uniformity of distribution of variable parameters in the surveyed area, rejection of experimental data 
points falling outside of the universal set is performed. At the end of this stage, a final range of variable 
parameters for optimization is set. 

4. Execution of multi-objective optimization resulting in a specified number of Pareto optimal solutions.  
5. Analysis of optimization results. 
6. Carrying out an experiment to obtain a set of Pareto optimal alloy compositions (or a certain subset) and analysis 

of the results obtained.  
7. Change of optimization problem statement (number of simultaneous objectives and constraints, the set and range 

of variable parameters), and returning to step 2. 
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8. Modification of database and returning to step 4. 
9. Stop 

 
5.2 Initial (universal) experimental database 

For this particular case, the initial data represented a database containing information on 201 experimentally tested 
alloys. The data are contained in the file ini_data.xls. A preliminary analysis of data has shown that for certain alloys 
there is no complete information on alloy chemical composition. Such alloys were excluded from further analysis. Besides, 
some chemical elements (V, Bi, Se, Zr, Sb, Cd ) were present in a very small number of alloys, which makes it impossible 
to assess their effect proceeding from information in this database. Such alloys were also excluded from further analysis. 
The remaining database had 176 alloys (file first.xls). 

At the next stage, an evaluation of uniformity of distribution of the percentage values of different elements in the 
existing range was made. It turned out that certain alloys had percentages differing very strongly from the universal set. 
As an example Fig.1 presents distribution of the percentage of sulfur in the alloys of the reduced database. The alloy 
No.67 had percentage of sulfur exceeding average value by some 10 times. Such alloys were excluded from further 
analysis. The capacity of the remaining database was 158 alloys (the file second.xls). 
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Fig. 1. Distribution of percentage of sulfur (S) in experimental database for steel alloys. 
 
5.2.1 Variable parameters 

In this problem the percentages of the following 17 elements were taken as independent variables:  
C, S, P, Cr, Ni, Mn, Si, Cu, Mo, Pb, Co, Cb, W, Sn, Al, Zn, Ti.  
The ranges of these elements were set as follows. First, minimum and maximum values for existing set of experimental 
data ( 17,1i  ,max_Exp ,min_Exp ii = ) were defined. Then, new minimum and maximum values for each of the 17 
elements were obtained according to the following simple dependencies: 
( 17,1i  ,max_Exp1.1Max ,min_Exp9.0Min iiii =⋅=⋅= ). The existing ranges are given in Table 1.  
 

Table 1. Ranges of variation of 17 independent variables (chemical elements in the steel alloy) 
   C   S   P   Cr   Ni   Mn   Si   Cu   Mo  

min 0.063 0.001 0.009 17.500 19.300 0.585 0.074 0.016 0.000 
max 0.539 0.014 0.031 39.800 51.600 1.670 2.150 0.165 0.132 

          
   Pb   Co   Cb   W   Sn   Al   Zn   Ti   

min 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000  
max 0.006 0.319 1.390 0.484 0.007 0.075 0.015 0.198  

 
The following parameters were used as optimization objectives: 

• Stress (PSI – maximize); 
• Operating temperature (T – maximize); 
• Time to "survive" until rupture (Hours – maximize). 

Under the research the solution of a three-objectives optimization problem and a series of two-objectives problems were 
accomplished when one of the considered parameters was constrained.   
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5.2.2 Simultaneous optimization of three objectives for alloys having 17 chemical elements 

During the first stage, the problem of simultaneously optimizing three objectives was solved with 100 points of Pareto 
optimal solutions. The results are given in the file task1.xls in Appendix 1. Figure 2 presents obtained Pareto optimal 
solutions in objectives’ space (PSI – HOURS). Analysis of this figure allows us to extract an area of admissible 
combinations of different optimization objectives. It can be seen that results are distributed in the admissible part of the 
objectives’ space quite uniformly. Such a distribution offers a possibility for a significant improvement of accuracy of 
response surfaces on condition that the experiments will be carried out at the obtained Pareto optimal points. In principle, 
the first iteration of the process of alloy chemical composition optimization by several objectives could be regarded as 
completed. Then, in accordance with the elaborated technique, it is necessary to conduct experiments at the obtained 
Pareto optimal points, evaluate accuracy of prediction of values of partial optimization criteria, and either complete the 
process or perform another iteration.  

However, such a strategy seems very difficult to implement for a researcher who knows his tasks more accurately. It 
can be seen that the ranges of variation of optimization objectives for obtained Pareto set are very wide. At the same time, 
if a researcher can formulate the problem more specifically (for example, by setting constraints on the objectives) the 
volume of experimental work can be substantially reduced.  

Figure 3 presents interdependence of the chosen optimization objectives built on the obtained set of Pareto optimal 
solutions. Analysis of these figures shows that the increase of temperature, for instance, leads to the decrease of 
compromise possibilities between PSI and HOURS. Hence, if a researcher knows exactly in what temperature range the 
alloy being designed will be used, it is more economical that the problem of two-objectives optimization be solved with 
additional constraint for the third efficiency parameter.  

Larsen-Mueller diagram (Fig. 4) has PSI on the vertical axis and the following expression on the horizontal axis 
(Temperature in Rankine degrees) * log(HOURS + 20). Here, logarithm is with the basis 10, while temperature is in 
Rankine = temperature in Fahrenheit + 460. 
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Fig.2. Time to rupture vs. strength interdependence of optimization objectives for three-objectives Pareto set. 
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Fig.3. Temperature vs. strength iterdependence of optimization objectives for three-objectives Pareto set. 
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Fig. 4. Larsen-Mueller diagram for three-objectives optimization results. 
 
5.2.3 A sequence of two-objective optimizations of alloys with 17 chemical elements 

This part presents results of solution of five additional two-objectives problems in which PSI and HOURS were 
regarded as simultaneous objectives, and different constraints were placed on temperature: 

• Problem 2. - , number of Pareto optimal solutions is 20. 1600T ≥
• Problem 3. - , number of Pareto optimal solutions is 20. 1800T ≥
• Problem 4. - , number of Pareto optimal solutions is 20. 1900T ≥
• Problem 5. - , number of Pareto optimal solutions is 15. 2000T ≥
• Problem 6. - , number of Pareto optimal solutions is 10. 2050T ≥

Results of solution of these problems are contained in the file task2-6.xls. Some of the graphical results are presented in 
Figs. 5-7. Figure 5 presents obtained sets of Pareto optimal solutions in objectives space. It can be seen that maximum 
achievable values of PSI and HOURS, and possibilities of compromise between these parameters largely depend on 
temperature. For instance, the increase of minimum temperature from 1600 F to 1900 F leads to the decrease of 
attainable PSI by more than 50 percent. At the same time, limiting value of HOURS will not alter with the change of 
temperature.  
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Fig. 5. Sets of Pareto optimal solutions of five problems with two-objectives. 
 

The decrease of the number of simultaneous optimization objectives (transition from three- to two-objectives problem 
with constraints) leads to the decrease of the number of additional experiments needed, at the expense of both 
decreasing the number of Pareto optimal points and decreasing the ranges of chemical compositions.  

Three-dimensional plots (Pareto surfaces) where the three coordinates are PSI, TEMP, and HOURS are given in 
Figures 6. Notice that since the range of Pareto-optimal points distribution is not a square, the quality of the surfaces is 
somewhat reduced: 
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Larsen-Mueller diagram for this set of cases (2-objective optimization for five temperatures) is shown in Figure 7. 
We also calculated sensitivity derivatives at 7 Pareto-optimal points. These derivatives are in the “derivatives.xls” 

file. But we think, that accuracy of these evaluations is very low.  
 

   
Fig. 6. Non-cumulative plots showing T=2050, T=2000, T=1900, T=1800, T=1600. 
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Fig. 7. Larsen-Mueller diagrams for five two-objectives optimization problems results. 
 

Figs. 8-11 show ranges of percentages of different elements for initial set of experimental data, and for results of 
solution of six optimization problems. It is noteworthy that a competent analysis of results obtained can allow the specialist 
to soundly choose chemical compositions for which the experiment is necessary, from the viewpoint of achieving 
desirable values of optimization objectives and building a more accurate response surface.  
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Fig. 8. Boundaries of variable parameters for two-objectives sets of Pareto optimal solutions. 
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Fig. 9. Boundaries of variable parameters for sets of two-objectives Pareto optimal solutions. 
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Fig. 10. Boundaries of variable parameters for sets of Pareto optimal solutions. 
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Fig. 11. Boundaries of variable parameters for sets of Pareto optimal solutions. 
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5.3 Optimization Results for the Cases With 9 Design Variables 

We then repeated the three-objectives optimization run in which we used only the following 9 chemical elements as 
independent variables: C, Cr, Ni, Mn, Si, Mo, Cb, W, Ti.  We have followed the same steps during the optimization as 
when solving the problem with 17 variables. But, in this case there are differences: 
 

Table 2. Ranges of variation of 9 independent variables (chemical elements in the steel alloy) 
   C   Cr   Ni   Mn   Si   Mo   Cb   W   Ti  

min 0.00 17.50 25.00 0.00 0.00 0.00 0.00 0.00 0.00 
max 0.60 30.00 35.00 2.00 2.00 2.00 3.00 2.00 2.00 

 
The main reason of accuracy of the response surface representation deterioration is that while decreasing the number of 
variables for the same experimental data set, we added the additional noise. For example, in the file "distan.xls" one can 
find five pairs of points that are very close in variables’ space, but have drastically different values of objectives. 
 
5.3.1 Three-criteria optimization using 9 design variables (chemical species):  
            see file v9-task1-3criteria.xls in Appendix 2 
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Fig.12. Distribution of points in objectives space using 9 design variables (chemical species). 
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Fig. 13. Interdependence of optimization objectives for Pareto set using 9 design variables (chemical species). 
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Fig.14. Pareto surfaces using 9 design variables (chemical species). 
 
5.3.2 Two-objectives optimization using 9 design variables (tasks N2,…,N6): see file v9-task2-6.xls 

Analysis of the three-criteria optimization results shows that there are no solutions with temperature less or equal 
1600F. Because of this, we changed the value of a constraint for the task N2. Constraint  was replaced with 1600T ≥

1700T ≥ . 
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Fig. 15. Pareto-optimal sets for five different (temperature) constraints using 9 design variables. 
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Fig. 16. Larsen-Mueller diagrams for two-criteria optimization problems using 9 design variables. 
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Fig. 17. Larsen-Mueller diagrams for five two-criteria optimization problems results using 9 design variables. 
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Fig. 18. Boundaries of variable parameters for sets of Pareto optimal solutions with 9 design variables. 
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Fig. 19. Boundaries of variable parameters for sets of Pareto optimal solutions with 9 design variables. 
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Fig. 20. Boundaries of variable parameters for sets of Pareto optimal solutions with 9 design variables. 
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5.4 Optimization Results for the Cases With 8 Design Variables 

We then repeated this optimization run (three objectives) in which we used only 9 chemical elements as independent 
variables: C, Cr, Ni, Mn, Si, Mo, Cb, W.  Thus, Titanium was deleted from the previous case with 9 variables.  We have 
followed the same steps during the optimization as when solving the problem with 17 variables. But, in this case there are 
differences. The variables’ ranges were changed.  
 

Table 3. Ranges of variation of 8 independent variables (chemical elements in the steel alloy) 
   C   Cr   Ni   Mn   Si   Mo   Cb   W  

min 0.00 17.50 25.00 0.00 0.00 0.00 0.00 0.00 
max 0.60 30.00 35.00 2.00 2.00 2.00 3.00 2.00 

 
The main reason of accuracy deterioration of the response surface representation is that while decreasing the number of 
variables for the same experimental data set, we added the additional noise.  
 
5.4.1 Three-criteria optimization 
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Fig. 21. Distribution of points in the objectives space using 8 design variables (chemical species). 
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Fig. 22. Interdependence of optimization objectives for Pareto set using 8 design variables (chemical species). 
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Fig. 23. Three-dimensional views of Pareto surfaces using 8 design variables (chemical species). 
 
5.4.2 Two-objectives optimization (tasks N2,…,N5) using 8 design variables (chemical species) 

Analysis of the three-criteria optimization results shows that there are no solutions with temperature less or equal 
1600F. Because of this, we changed the value of constraint for the task N2. Constraint  was replaced with 1600T ≥

1700T ≥ . Moreover, the constraint with 2050T ≥  has no feasible solutions in these test cases. 
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Fig. 24. Pareto-optimal sets using 8 design variables (chemical species). 
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Fig. 25. Larsen-Mueller diagrams for three-criteria optimization: results using 8 design variables (chemical species). 
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Fig. 26. Larsen-Mueller diagrams for two-criteria optimization: results using 8 design variables (chemical species). 
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Fig. 27. Input data set and optimized ranges of chemical species using 8 design variables (chemical species). 
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Fig. 28. Input data set and optimized ranges of chemical species using 8 design variables (chemical species). 
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5.5 Experimental Proof-of-the-Concept 

We were unexpectedly faced with a situation where we could not use old experimental data base which we had 
before because a company that has been manufacturing our alloys and performing experimental evaluations of the 
thermo-mechanical properties of these alloys has abruptly changed their technology of producing such materials.  That is, 
the old experimental data that was originally purchased corresponded to a different technological process.  In addition, 
these experimental data had very bad distribution, which is why the approximation function (response surface analytical 
representation) had low level of accuracy. 

This is the reason for a recent delay in our research and why we needed to obtain a new experimental data set.  First, 
we created a new experimental plan.  It had 120 ally compositions generated using Sobol’s algorithm (Sobol, 1976) so 
that they are as uniformly distributed in the function space as possible thus creating conditions for very accurate response 
surface fit.  We contracted these 120 steel alloys to be manufactured each having a specific different concentration of 
each of the seven elements.  The chemical elements deemed to be important were Ni, C, Cr, Co, W, Mo, Al, Ti, B, Nb, 
Ce, Zr, Y, while the elements given in Table 4 were treated as extraneous impurities. 
 

Table 4. Average percent of the extraneous species 

S P Fe Mn Si Pb Bi 

0.0037 0.006 0.085 0.013 0.067 0.0005 0.0005 

 
Chemical elements whose concentrations were optimized were Ni, C, Cr, Co, W, Mo, Al, Ti.  Concentration of Nb in all 
sample alloys was kept constant at 1.1 %, while concentrations of B, Ce, Zr, Y were kept at 0.025%, 0.015%, 0.04%, and 
0.01%, respectively.  Concentration of nickel was treated as represented by the amount remaining until completing 100 %.  
The design variables were allowed to vary within the limits given in Table 5. 
 

Table 5. Ranges of variation of 7 chemical elements to be optimized 
   C   Cr   Co   W   Mo   Al   Ti  

min 0.13 8.0 9.0 9.5 1.2 5.1 2.0 
max 0.20 9.5 10.5 11.0 2.4 6.0 2.9 

 
Two simultaneous objectives of the alloy concentration optimization process were: maximize stress and maximize time 
until rupture at a fixed temperature of 975 degrees Celsius.   

The experimental evaluation of the stress and life until rupture at a fixed temperature were performed for each of 
these 120 alloys (Table 6). 

Then, we solved the optimization problem based on this experimental data, and found 20 Pareto set points (Table 7, 
columns 4,...,10). 

Next, we had these 20 optimized concentrations manufactured and manufactured and experimentally tested (Table 7, 
columns 2 and 3; also Fig. 29).  Consequently, seven new points of Pareto optimal set were found after the first iteration 
(they are points 121-125, 127 and 134 in Table 7).  That is, we found 7 new steel alloy compositions so that each of them 
allows improvements of both objectives (Fig. 30). 

Then, we solved a new optimization problem with all 140 points (120 original alloys plus 20 new Pareto set alloys). 
We found 20 new points of the Pareto set and we sent this information for the subcontractor to manufacture these 20 
alloys, test them using classical experimental techniques, and provide us with these measured properties. We expect 
these results by early December of 2003.  This constitutes the second iteration. 

Total number of experimental points that we could afford on this project from the funds expended so far is 200.  This 
is due to our limit of funds which we have budgeted for experimental research during this period. This means that we can 
afford to make only 4 iterations where each iterative stage has 20 new experimental points.  
 



 

 
 

Fig. 29. Predicted and experimentally verified stress and life-time values after the first iteration. 
 

 
 

Fig. 30. The original experimental data set and the Pareto optimized new alloys after only one iteration. 
 
 28



 
 

Fig. 31. Concentrations of different elements in the original data set and in the Pareto optimized set after the first iteration. 
 

Table 6. Initial experimental data set for 120 steel alloys. 
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  Sigma, 
kg/mm2

Time, 
hours C, % Cr, % Co, % W, % Mo, % Al, % Ti, % 

1 103.7 45.02 0.190 8.93 9.90 10.23 1.27 5.67 2.45 

2 103.7 25.17 0.175 8.75 9.93 9.79 1.42 5.40 2.79 

3 103.5 44.52 0.179 9.24 9.83 10.11 1.36 5.58 2.72 

4 103.1 42.28 0.172 9.17 9.71 10.51 1.69 5.24 2.72 

5 102.4 40.10 0.194 8.63 9.67 10.37 1.55 5.29 2.74 

6 102.4 44.35 0.190 8.57 9.42 10.44 1.61 5.44 2.81 

7 101.9 44.77 0.192 8.91 9.93 10.19 1.47 5.33 2.68 

8 101.7 45.12 0.193 8.69 10.23 10.20 1.68 5.17 2.70 

9 101.6 57.40 0.176 8.66 9.53 10.48 1.53 5.52 2.68 

10 101.5 56.67 0.170 8.61 9.85 9.71 1.67 5.23 2.67 

11 101.4 48.60 0.173 9.23 9.87 10.35 1.32 5.83 2.75 

12 101.1 58.03 0.187 8.69 9.51 10.57 1.60 5.29 2.86 
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  Sigma, 
kg/mm2

Time, 
hours C, % Cr, % Co, % W, % Mo, % Al, % Ti, % 

13 101.0 58.15 0.183 8.90 10.07 10.11 1.45 5.41 2.59 

14 100.9 54.12 0.192 9.08 9.84 9.86 1.40 5.80 2.73 

15 100.8 56.02 0.157 9.01 9.77 10.38 1.25 5.45 2.66 

16 100.7 66.32 0.168 8.86 10.05 10.05 1.51 5.52 2.67 

17 100.6 66.55 0.186 9.23 9.74 10.02 1.46 5.68 2.72 

18 100.5 67.45 0.162 8.94 9.79 10.07 1.40 5.55 2.79 

19 100.5 67.45 0.173 8.68 9.92 10.14 1.64 5.41 2.74 

20 100.5 68.18 0.165 9.00 9.69 10.58 1.29 5.56 2.72 

21 100.2 71.07 0.177 9.07 9.64 9.78 1.47 5.75 2.72 

22 100.2 71.55 0.185 8.72 9.44 10.23 1.67 5.63 2.75 

23 100.2 64.92 0.163 8.78 9.56 10.36 1.70 5.49 2.81 

24 100.0 69.47 0.179 9.02 9.70 10.47 1.47 5.91 2.76 

25 99.7 76.11 0.197 8.80 9.61 10.06 1.22 5.47 2.55 

26 99.7 67.84 0.192 8.88 9.85 9.83 1.43 5.63 2.90 

27 99.6 76.80 0.179 9.10 9.80 10.72 1.40 5.26 2.71 

28 99.5 72.15 0.179 8.75 9.97 9.96 1.62 5.54 2.54 

29 99.4 64.74 0.185 9.07 10.10 9.94 1.41 5.65 2.83 

30 99.3 60.30 0.163 8.92 9.99 10.03 1.50 5.48 2.78 

31 99.3 33.40 0.171 9.22 9.97 10.78 1.64 5.80 2.77 

32 99.1 80.13 0.186 8.94 9.90 10.57 1.33 5.42 2.57 

33 99.0 76.86 0.181 8.51 9.69 10.12 1.50 5.46 2.64 

34 99.0 81.25 0.173 8.81 9.98 10.11 1.62 5.26 2.72 

35 99.0 39.62 0.181 9.46 9.76 10.57 1.40 5.47 2.74 

36 99.0 81.05 0.167 8.69 9.50 10.24 1.60 5.54 2.72 

37 98.9 79.14 0.178 8.99 9.66 10.48 1.64 5.37 2.71 

38 98.8 80.70 0.194 8.93 9.63 9.78 1.70 5.22 2.58 

39 98.7 74.42 0.187 8.88 9.65 10.37 1.59 5.49 2.76 

40 98.6 64.99 0.182 8.94 10.07 9.69 1.47 5.69 2.76 

41 98.6 69.03 0.188 8.93 9.53 10.43 1.66 5.52 2.77 

42 98.5 72.63 0.186 8.62 9.75 10.59 1.65 5.17 2.69 

43 98.5 77.92 0.195 8.73 9.65 10.49 1.59 5.24 2.61 

44 98.4 85.20 0.177 8.82 9.66 10.34 1.27 5.59 2.73 

45 98.4 80.47 0.190 8.95 9.82 10.71 1.60 5.51 2.69 
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  Sigma, 
kg/mm2

Time, 
hours C, % Cr, % Co, % W, % Mo, % Al, % Ti, % 

46 98.4 77.82 0.195 8.70 9.42 10.03 1.59 5.20 2.79 

47 98.3 41.90 0.162 8.43 9.83 10.71 1.51 5.26 2.56 

48 98.3 65.50 0.164 8.91 9.66 10.69 1.54 5.48 2.55 

49 98.1 73.34 0.199 9.20 10.21 9.71 1.35 5.60 2.75 

50 98.1 65.60 0.160 8.79 9.72 10.45 1.48 5.57 2.66 

51 98.0 84.30 0.171 8.70 10.21 10.08 1.49 5.41 2.66 

52 98.0 78.51 0.169 9.09 9.75 10.04 1.39 5.52 2.77 

53 97.9 88.80 0.183 8.76 9.84 10.15 1.42 5.36 2.59 

54 97.9 89.12 0.180 8.66 10.06 10.03 1.60 5.43 2.73 

55 97.9 59.84 0.188 9.09 9.74 10.55 1.76 5.38 2.78 

56 97.9 80.98 0.171 8.70 9.46 10.12 1.55 5.85 2.64 

57 97.9 74.75 0.179 9.11 9.73 10.22 1.66 5.28 2.77 

58 97.8 73.87 0.190 8.74 9.74 10.20 1.50 5.14 2.60 

59 97.8 88.07 0.165 8.92 9.69 10.69 1.34 5.39 2.50 

60 97.8 74.75 0.189 8.85 9.88 10.53 1.48 5.73 2.63 

61 97.8 79.66 0.188 8.72 9.60 10.39 1.53 5.20 2.72 

62 97.8 76.83 0.196 8.68 9.48 10.52 1.65 5.08 2.64 

63 97.7 72.56 0.194 8.87 9.52 10.58 1.75 5.61 2.65 

64 97.7 49.20 0.170 9.21 9.75 10.83 1.55 5.81 2.63 

65 97.6 83.29 0.167 9.00 9.83 10.37 1.48 5.40 2.69 

66 97.3 76.14 0.185 8.74 9.54 10.38 1.71 5.78 2.68 

67 97.2 72.47 0.187 8.73 10.15 10.26 1.56 5.58 2.81 

68 97.1 72.96 0.191 9.03 9.64 10.53 1.60 5.22 2.80 

69 97.1 75.84 0.194 8.81 9.72 10.44 1.63 5.44 2.78 

70 97.0 59.42 0.176 8.82 10.15 10.03 1.34 5.24 2.66 

71 97.0 35.87 0.171 9.31 10.13 10.93 1.39 5.49 2.55 

72 97.0 85.47 0.170 8.60 9.48 9.84 1.46 5.39 2.41 

73 96.9 81.25 0.180 8.72 9.74 10.58 1.67 5.36 2.74 

74 96.8 40.80 0.197 9.10 9.98 10.72 1.68 5.09 2.70 

75 96.7 84.50 0.167 9.03 10.05 10.37 1.33 5.23 2.57 

76 96.6 80.28 0.166 8.97 9.76 10.02 1.33 5.70 2.80 

77 96.6 62.33 0.180 9.15 9.50 10.44 1.71 5.45 2.84 

78 96.4 86.09 0.163 8.56 9.89 10.11 1.33 5.39 2.65 
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  Sigma, 
kg/mm2

Time, 
hours C, % Cr, % Co, % W, % Mo, % Al, % Ti, % 

79 96.4 90.75 0.183 8.78 9.59 10.63 1.60 5.45 2.78 

80 96.2 91.55 0.183 9.13 9.68 10.33 1.44 5.42 2.60 

81 96.2 59.84 0.182 9.11 9.91 10.06 1.44 5.76 2.76 

82 96.2 70.78 0.169 9.22 9.56 10.42 1.35 5.38 2.73 

83 96.2 70.71 0.194 9.08 9.70 10.27 1.61 5.32 2.55 

84 96.2 70.99 0.177 9.05 9.76 10.52 1.61 5.40 2.73 

85 96.2 65.20 0.181 8.90 9.81 10.72 1.68 5.66 2.58 

86 96.0 39.22 0.212 9.23 9.91 10.68 1.64 5.22 2.65 

87 95.9 64.91 0.186 8.66 9.43 10.37 1.54 5.26 2.81 

88 95.8 82.13 0.174 8.65 9.76 9.73 1.40 5.32 2.52 

89 95.8 89.53 0.163 8.79 9.79 10.40 1.43 5.34 2.56 

90 95.8 75.10 0.197 9.04 9.83 10.62 1.57 5.39 2.77 

91 95.7 81.71 0.163 8.64 9.83 10.55 1.45 5.11 2.56 

92 95.7 76.69 0.179 9.24 9.78 9.90 1.38 5.39 2.75 

93 95.6 88.91 0.189 8.75 9.79 10.14 1.30 5.34 2.47 

94 95.6 85.94 0.185 8.88 9.93 10.56 1.41 5.30 2.52 

95 95.6 77.96 0.175 8.73 9.58 10.51 1.57 5.67 2.73 

96 95.6 75.40 0.192 8.79 9.51 10.37 1.55 5.40 2.62 

97 95.5 72.05 0.182 9.07 9.48 10.39 1.78 5.33 2.67 

98 95.5 30.30 0.179 8.68 9.63 10.42 1.60 5.67 2.85 

99 95.4 43.19 0.175 8.82 9.56 10.45 1.65 5.60 2.87 

100 95.4 34.50 0.152 9.00 10.06 10.78 1.64 5.73 2.63 

101 95.3 83.56 0.182 9.20 9.75 10.06 1.45 5.04 2.64 

102 95.3 74.43 0.188 8.81 9.41 10.47 1.61 5.48 2.60 

103 95.3 61.25 0.168 8.85 9.26 10.15 1.55 5.45 2.72 

104 95.2 81.88 0.177 9.15 9.70 10.42 1.26 5.47 2.56 

105 95.2 70.91 0.189 8.80 9.53 10.40 1.56 5.93 2.72 

106 95.1 77.05 0.182 8.70 9.77 10.18 1.38 5.50 2.72 

107 95.0 71.07 0.183 8.98 9.73 10.49 1.64 5.48 2.63 

108 94.9 85.00 0.178 8.72 9.84 10.27 1.50 5.47 2.67 

109 94.6 54.65 0.183 9.00 10.24 10.55 1.53 5.44 2.65 

110 94.5 67.43 0.193 9.13 9.75 10.65 1.61 5.21 2.72 

111 94.5 63.30 0.169 9.22 9.69 10.29 1.40 5.52 2.77 
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  Sigma, 
kg/mm2

Time, 
hours C, % Cr, % Co, % W, % Mo, % Al, % Ti, % 

112 94.2 84.46 0.173 8.88 9.98 10.83 1.41 5.31 2.59 

113 94.1 70.17 0.184 9.06 9.44 10.23 1.66 5.92 2.70 

114 94.0 87.63 0.182 8.97 9.61 9.86 1.24 5.63 2.87 

115 93.9 74.83 0.174 8.95 9.89 10.21 1.42 5.18 2.75 

116 93.5 74.73 0.198 9.03 9.88 9.69 1.33 5.58 2.84 

117 93.2 92.38 0.168 8.77 9.95 9.91 1.58 5.48 2.70 

118 93.0 72.70 0.157 8.91 9.77 10.17 1.46 5.51 2.80 

119 92.7 83.60 0.178 9.08 9.55 10.52 1.65 5.60 2.69 

120 90.7 80.10 0.173 9.00 10.07 9.88 1.38 5.77 2.83 

 
Table 7. Experimental verification of 20 optimized alloy compositions after the first iteration. 

  Sigma, 
kg/mm2

Time, 
hours C, % Cr, % Co, % W, % Mo, % Al, % Ti, % 

121 104.0 45.7 0.196 9.13 9.94 10.52 1.56 5.28 2.62 

122 101.6 58.3 0.162 8.88 9.94 10.16 1.60 5.60 2.63 

123 100.8 68.3 0.182 8.90 9.95 10.86 1.55 5.34 2.84 

124 100.3 75.7 0.188 8.92 9.64 10.57 1.60 5.67 2.77 

125 100.0 87.3 0.187 9.00 9.51 10.26 1.52 5.47 2.65 

126 98.5 70.3 0.172 8.98 9.85 10.63 1.63 5.23 2.70 

127 97.9 91.8 0.179 8.95 9.69 10.54 1.60 5.14 2.67 

128 97.9 70.4 0.181 9.21 9.79 10.52 1.60 5.46 2.74 

129 97.9 66.8 0.182 8.84 9.49 10.57 1.60 5.75 2.69 

130 97.5 51.5 0.190 9.04 9.54 10.30 1.70 5.74 2.80 

131 97.4 70.1 0.143 8.74 9.73 10.45 1.55 5.21 2.56 

132 97.3 49.6 0.182 8.90 9.87 10.78 1.68 5.40 2.62 

133 97.1 60.8 0.183 8.93 9.68 10.53 1.64 5.32 2.60 

134 96.9 103.7 0.144 8.85 9.66 10.43 1.50 5.52 2.42 

135 96.3 43.5 0.193 9.30 9.87 10.78 1.68 5.47 2.73 

136 96.3 52.2 0.185 8.88 9.53 10.36 1.61 5.30 2.62 

137 96.0 75.5 0.198 9.03 9.68 10.49 1.53 5.28 2.74 

138 96.0 58.3 0.186 8.92 9.75 10.73 1.74 5.44 2.86 

139 95.6 71.2 0.199 8.70 9.71 10.51 1.65 5.10 2.65 

140 93.2 71.8 0.191 8.51 9.53 10.33 1.59 5.49 2.55 
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5.6 The Concept of Inverse Design of Alloy Compositions 

Our research during the last quarter concentrated on the inverse method in predicting chemical composition of steel 
alloys.  It is a highly innovative approach that has received a warm welcome by some of the materials engineering experts 
from industry.  For example, this formulation allows a structural design engineer who designed a machine part to ask a 
materials scientist to provide him with a precise chemical composition of an alloy that will sustain a specified stress level, 
at a specified temperature, and last for a specified number of hours.  This inverse method uses a variant of Prof. 
Yegorov’s stochastic optimizer to determine not one, but a number of alloys (Pareto front points) each of which will satisfy 
the desired specifications while having different percentages of each of the alloying elements.  This provides the customer 
with increased flexibility when deciding to create such an alloy because he/she can use the “recipe” which is made of the 
most readily available and the cheapest elements on the market at that point in time. 

Several mathematical formulations and corresponding software packages have been developed for different ways 
how to achieve inverse determination of chemical compositions of alloys satisfying a set of specified mechanical and 
cost/availability properties.  These different formulations were then compared and analytically evaluated in an attempt to 
determine the most appropriate formulation.  This way, the customer can choose the optimized alloy composition that is 
the most available and the least expensive at a moment when it is ordered from the alloy manufacturer. 

The basic version of the licensed semi-stochastic multi-objective optimization software called IOSO was augmented 
so that now it can handle up to 14 simultaneous design objectives.  When testing samples of actual alloys, there is always 
certain level of measurement error due to the finite accuracy of the testing equipment.  This level of expected accuracy 
can now be specified and the results of the alloy composition optimization will automatically be modified to reflect this 
degree of uncertainty. Furthermore, during the manufacturing (melting and casting/solidification) of each new alloy, there 
is always a degree of uncertainty if the resulting alloy will have precisely the chemical composition that was expected 
when preparing and measuring the alloying components’ masses.  The level of this uncertainty depends on the level of 
sophistication of the alloy producing process.  Now, we have incorporated this feature in our alloy optimization software, 
whereby the materials designer can specify the accuracy level of the manufacturing process and the optimizer will 
automatically and appropriately modify the predicted quantities. 

In this problem the percentages of the following 14 elements were treated as independent variables:  
C, S, P, Cr, Ni, Mn, Si, Mo, Co, Cb, W, Sn, Zn, Ti. 

The ranges of these elements were set as follows. First, minimum and maximum values for existing set of 
experimental data (Expmini, Expmaxi = i = 1,..,14) were defined. Then, new minimum and maximum values for each of the 
14 elements were obtained according to the following simple dependencies: (Mini = 0.9 Expmini, Maxi = 1.1 Expmaxi = i = 
1,….,14). These ranges are given in Table 8.  
 

Table 8. Ranges of variation of 14 independent variables during inverse alloy design optimization 
 C S P Cr Ni Mn Si 

min 0.063 0.001 0.009 17.500 19.300 0.585 0.074 
max 0.539 0.014 0.031 39.800 51.600 1.670 2.150 

        
 Mo Co Cb W Sn Zn Ti 

min 0.000 0.000 0.000 0.000 0.000 0.001 0.000 
max 0.132 0.319 1.390 0.484 0.007 0.015 0.198 

 
The inverse problem in design of alloys is determination of chemical composition(s) of alloy(s) that will provide 

specified levels of, for example, stress at a specified temperature for the specified length of time.  The inverse problem 
can be then formulated as, for example, a multi-objective optimization problem with a given set of equality constraints. We 
have used IOSO stochastic optimization algorithm to achieve the solution of this type of inverse alloy design problem.  
The results are shown in a sequence of figures presented on pages 9-16.  It should be pointed out that these are the 
visualizations of only two (Cr and Ni) of the 14 chemical elements listed above and optimized in order to illustrate how the 
method works. 

When the temperature and the life expectancy are unconstrained (unspecified) the optimizer will give a fairly large 
domain for possible variations of the concentrations of Cr and Ni.  But, as the constraints on temperature level are 
introduced and progressively increased, the feasible domain for varying Cr and Ni will start to shrink.  Similar general 
trend can be observed when the life expectancy is specified and progressively increased.  Finally, when temperature level 
and the life expectancy are prescribed simultaneously and progressively increased simultaneously, the feasible domain 
for concentrations of Cr and Ni rapidly reduces.  Numbered iso-contours in all of these figures represent the stress level.  
Similar patterns could be obtained when looking at any other pair of alloying elements. 
 



Inverse problem of determining 
chemical compositions of alloys

(formulation # 1 )

Purpose: Determine chemical composition of an alloy that will have specified 
(desired) properties 

Problem features:
variable parameters: chemical composition of an alloy C, S, P, Cr, Ni, Mn, Si, Mo, 

Co, Cb, W, Sn, Zn, Ti ( 14 variables).
3 simultaneous objectives)criteria: (multi- objective statement –

•Stress (PSI)                                                    (PSI-PSI req.)**2 –> minimize 

•Operating temperature (T) (T-T req.)**2 –> minimize

•Time to "survive" until rupture (Hours)    (Hours-Hours req.)**2 –> minimize

constraints: have none
mathematical model: have none; use an existing database 

 

Inverse problem of determining 
chemical compositions of alloys

(formulation # 2 )

Purpose: Determine chemical composition of an alloy that will have specified 
(desired) properties 

Problem features:
variable parameters: chemical composition of an alloy C, S, P, Cr, Ni, Mn, Si, Mo, 

Co, Cb, W, Sn, Zn, Ti ( 14 variables).
criteria: (single-objective statement)

•Stress (PSI);
•Operating temperature (T);
•Time to "survive" until rupture (Hours).
(PSI-PSI req.)**2+ (T-T req.)**2+ (Hours-Hours req.)**2 –> minimize

constraints: have none
mathematical model: have none; use an existing database 
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Inverse problem of determining 
chemical compositions of alloys

(formulation # 3)

Purpose: Determine chemical composition of an alloy that will have specified 
(desired) properties 

Problem features:
variable parameters: chemical composition of an alloy C, S, P, Cr, Ni, Mn, Si, Mo, 

Co, Cb, W, Sn, Zn, Ti ( 14 variables).
criteria: (multiple-objectives statement – 3 simultaneous objectives)

•Stress (PSI);
•Operating temperature (T);
•Time to "survive" until rupture (Hours).

constraints: (PSI-PSI req.) –> minimize;
(T-T req.) –> minimize;
(Hours-Hours req.) –> minimize

constraints: have none
mathematical model: have none; use an existing database 

 
 

Inverse problem of determining 
chemical compositions of alloys

(formulation # 4)

Purpose: Determine chemical composition of an alloy that will have specified 
(desired) properties 

Problem features:
variable parameters: chemical composition of an alloy C, S, P, Cr, Ni, Mn, Si, Mo, 

Co, Cb, W, Sn, Zn, Ti ( 14 variables).
criteria: (single-objective statement)

•Stress (PSI);
•Operating temperature (T);
•Time to "survive" until rupture (Hours).
(PSI-PSI req.)**2+ (T-T req.)**2+ (Hours-Hours req.)**2 –>minimize

constraints: PSI-PSI req.) –> minimize;
(T-T req.) –> minimize;
(Hours-Hours req.) –> minimize

mathematical model: have none; use an existing database 
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Inverse problem of determining 
chemical compositions of alloys

(formulation # 5)

Purpose: Determine chemical composition of an alloy that will have specified 
(desired) properties 

Problem features:
variable parameters: chemical composition of an alloy C, S, P, Cr, Ni, Mn, Si, Mo, 

Co, Cb, W, Sn, Zn, Ti ( 14 variables).
criteria: (single-objective statement)

•Stress (PSI);
•Operating temperature (T);
•Time to "survive" until rupture (Hours).

(PSI-PSI req.)**2–>minimize
constraints: (T-T req.) –> minimize;

(Hours-Hours req.) –> minimize

mathematical model: have none; use an existing database 

 
 

Inverse problem of determining 
chemical compositions of alloys

(formulation # 6)

Purpose: Determine chemical composition of an alloy that will have specified 
(desired) properties 

Problem features:
variable parameters: chemical composition of an alloy C, S, P, Cr, Ni, Mn, Si, Mo, 

Co, Cb, W, Sn, Zn, Ti ( 14 variables).
criteria: (single-objective statement)

•Stress (PSI);
•Operating temperature (T);
•Time to "survive" until rupture (Hours).

(T-T req.)**2 –> minimize
constraints: PSI-PSI req.) –> minimize;

(Hours-Hours req.) –> minimize

mathematical model: have none; use an existing database 
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Inverse problem of determining 
chemical compositions of alloys

(formulation # 7)

Purpose: Determine chemical composition of an alloy that will have specified 
(desired) properties 

Problem features:
variable parameters: chemical composition of an alloy C, S, P, Cr, Ni, Mn, Si, Mo, 

Co, Cb, W, Sn, Zn, Ti ( 14 variables).
criteria: (single-objective statement)

•Stress (PSI);
•Operating temperature (T);
•Time to "survive" until rupture (Hours).

(Hours-Hours req.)**2 –> minimize
constraints: PSI-PSI req.) –> minimize;

(T-T req.) –> minimize;

mathematical model: have none; use an existing database 

 
 

Inverse problem of determining 
chemical compositions of alloys

(formulation # 8 )

Purpose: Determine chemical composition of an alloy that will have specified 
(desired) properties 

Problem features:
variable parameters: chemical composition of an alloy C, S, P, Cr, Ni, Mn, Si, Mo, 

Co, Cb, W, Sn, Zn, Ti ( 14 variables).
10 simultaneous objectives)criteria: (multi- objective statement –

•Stress (PSI)                                                    (PSI-PSI req.)**2 –> minimize 

•Operating temperature (T) (T-T req.)**2 –> minimize

•Time to "survive" until rupture (Hours)    (Hours-Hours req.)**2 –> minimize
Cr -> minimize;   Ni->minimize;   Mo->minimize;  Co->minimize;  Cb >minimize;
W >minimize;     Sn >minimize;   Zn >minimize;   Ti >minimize;

constraints: have none
mathematical model: have none; use an existing database 
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Comparative analysis of accuracy of satisfying prescribed
stress, temperature, life expectancy and their combination 

for inverse formulations # 1 to #8
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Comparison of various parameters 
(number of analysis needed, number of constraints, 

number of Pareto points, number of objectives) 
used in inverse formulations # 1 to #8)
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Mathematical criteria for comparative analysis of 
different inverse formulations for 

determining chemical compositions of alloys

Score =  K1 *K 2* (Eps )/ K3  -> Maximize

Eps= SUM(* 1/ ( (PSI-PSI req.)**2+ (T-T req.)**2+ (Hours-Hours req.)**2 ) )

K1 = 10*N object + N Constr + N design

K 2 =  100* Del PSI  + Del T + Del Hours

Del PSI =  1- (PSI-PSI req.) / PSI req.
Del T = 1- (T-T req.) / T req.

Del Hours =  1- (Hours-Hours req.) / Hours req.

K 3 = N calls/ N Poreto

 
 

Comparative analysis of overall performance
of different inverse formulations for 

determining chemical compositions of alloys
(formulations # 1 to #8)
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Comparative analysis of different inverse formulations for 
determination of chemical compositions of alloys

1.00083446103.552E-09.127E-10.928E-09.714E-09Prob.8

0.256776112.309E-10.299E-12.515E-10.408E-10Prob.7

0.180774112.646E-06.980E-04.576E-15.954E-06Prob.6

0.239601112.646E-06.549E-06.139E-05.413E-13Prob.5

0.2461020113.111E-12.244E-18.289E-12.434E-13Prob.4

0.8174455033.777E-10.134E-12.143E-09.897E-10Prob.3

0.246703113.104E-07.172E-08.267E-07.269E-08Prob.2

0.5904175030.297E-06.536E-06.356E-06.408E-19Prob.1

ScoreN
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Multicriteria optimization of material composition 
for preset properties (inverse problem) using method #3
Number of variables (alloying elements): 14.
Criteria: determine Cr and Ni concentrations.

This approach allows 
us to vary the chemical
composition for the
same properties  !

24 28 32 36 40
Cr, %
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time=8000
time=7000
time=6000
time=5000

Constraints:
Stress=4000; 
Temperature=1800; 
Time=preset time.
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Number of variables (alloying elements): 14.
Criteria: determine Cr and Ni concentrations.

Constraints:
Stress=4000 
Temperature=1800
Time=5000.
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Multicriteria optimization of material composition 
for preset properties (inverse problem) using formulation #3

This approach 
allows 
us to vary the 
chemical
composition for the
same properties !

 
 

Optimization of chemical compositions of alloys

Purpose: Optimization of chemical composition of an alloy by 
a number of criteria with the use of an existing database

Problem features:
variable parameters: chemical composition of an alloy C, S, P, 

Cr, Ni, Mn, Si, Mo, Co, Cb, W, 
Sn, Zn, Ti ( 14 variables).

criterion: for a given level of response surface accuracy for 
properties of alloy :

•Stress (PSI – maximize);
•Operating temperature (T – maximize);
•Time to "survive" until rupture (Hours – maximize).
response surface accuracy

mathematical model: have none; use an existing database
 

 

 42



500

1000

1500

2000

4000 5000 6000 7000 8000 9000 10000

1900

1850

1800 1750

1700 1650

1600

stress

tim
e

temperature

Multicriteria optimization of material properties 
taking into account the response surface accuracy

Criteria: stress, time, temperature.
Constraint: response surface accuracy.

Response surface  error < 10%

Response surface  error < 20%

Response surface  error < 50%

This approach enables 
us to ensure higher 
levels of  reliability of 
realization for 
optimized solutions !

 
 

Optimization of chemical compositions of alloys

Purpose: Optimization of chemical composition of an alloy by 
a number of criteria, with the use of existing database

Problem features:
variable parameters: chemical composition of an alloy C, S, P, 

Cr, Ni, Mn, Si, Mo, Co, Cb, W, 
Sn, Zn, Ti ( 14 variables).

criterion: for a given level of probability for properties of alloy :
•Stress (PSI – maximize);
•Operating temperature (T – maximize);
•Time to "survive" until rupture (Hours – maximize).

mathematical model: have no, the use of existing database
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Multicriteria optimization of material properties 
by probability criteria

Criteria: stress and temperature
which are ensured with 
preset probability;

This approach enables us 
to achieve higher levels of  
probability of 
manufacturing the 
designed alloys by taking 
into account the 
uncertainty of the actual 
concentrations of alloying 
elements. 0 4000 8000 12000 16000

stress
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2000
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2400
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re

Sig=0.05
Probability criteria

deterministic
Ppre=10%
Ppre=50%
Ppre=99%

Constraint: time ensured with
preset probability.

Condition: chemical elements
concentrations are
distributed by normal
law with sigma=0.05

 
 

Optimization of chemical compositions of alloys

Purpose: Optimization of chemical composition of an alloy by 
a number of criteria, with the use of existing database

Problem features:
variable parameters: chemical composition of an alloy C, S, P, 

Cr, Ni, Mn, Si, Mo, Co, Cb, W, 
Sn, Zn, Ti for given level of accuracy 
( 14 variables).

criterion: for given level of probability for properties of alloy :
•Stress (PSI – maximize);
•Operating temperature (T – maximize);
•Time to "survive" until rupture (Hours – maximize).

mathematical model: have none; use an existing database
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Multicriteria optimization of material properties 
by probability criteria

Criteria: stress and temperature
which are ensured with 
preset probability;

This approach allows us to
find solutions with a given
level of manufacturing 
accuracy with life time 
expectancy probability 
criteria of 50%.

Constraint: time ensured with
preset probability.

Condition: chemical elements
concentrations are
distributed by normal
law with sigma=0.05
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Probability criteria Ppre=0.99
Sigma=0.01
Sigma=0.03
Sigma=0.05
Sigma=0.07
Sigma=0.10

Robust Design Optimization
(Pareto set in probability statement)
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10. Appendixes 
Appendix 1 
 
first.xls 

PSI DEGREE F HOURS C S P Cr Ni Mn Si Cu Mo Pb Co
3498.000 1850.000 1587.000 0.410 0.007 0.013 27.700 46.210 0.700 1.270 0.080 0.021 0.002 0.020
6998.000 2100.000 53.000 0.033 0.009 0.016 20.730 60.520 0.410 0.530 0.050 9.630 0.004 0.006
6998.000 1700.000 83.000 0.033 0.009 0.016 20.730 60.520 0.410 0.530 0.050 9.630 0.004 0.006
6998.000 1700.000 45.000 0.033 0.009 0.016 20.730 60.520 0.410 0.530 0.050 9.630 0.004 0.006
2802.000 2000.000 24.000 0.409 0.010 0.017 24.310 35.400 0.790 1.520 0.080 0.050 0.001 0.150
2817.000 2000.000 33.000 0.400 0.010 0.017 24.340 35.060 0.075 1.610 0.100 0.050 0.001 0.110
3008.000 1800.000 148.000 0.070 0.009 0.016 25.180 35.250 0.710 1.690 0.040 0.040 0.001 0.080
5012.000 1700.000 32.000 0.070 0.009 0.016 25.180 35.250 0.710 1.690 0.040 0.040 0.001 0.080
3000.000 1750.000 838.000 0.130 0.009 0.018 24.270 34.140 0.730 1.630 0.090 0.020 0.001 0.040
6000.000 1600.000 140.000 0.110 0.009 0.019 24.240 34.280 0.690 1.640 0.090 0.020 0.001 0.004
4303.000 1700.000 471.000 0.110 0.008 0.017 24.190 34.180 0.800 1.640 0.080 0.030 0.001 0.040
2700.000 1742.000 424.000 0.080 0.006 0.019 23.210 34.330 0.840 1.650 0.020 0.010 0.001 0.020
2700.000 1742.000 424.000 0.080 0.006 0.109 23.210 34.330 0.840 1.650 0.020 0.010 0.001 0.020
6019.000 1700.000 50.000 0.160 0.010 0.018 25.350 34.830 1.000 1.770 0.080 0.050 0.001 0.040
2505.000 1900.000 246.000 0.180 0.010 0.017 24.770 35.320 0.990 1.760 0.080 0.050 0.001 0.040
3007.000 1800.000 1175.000 0.160 0.011 0.019 25.800 34.500 0.960 1.610 0.090 0.050 0.001 0.050
3998.000 1850.000 614.000 0.410 0.007 0.020 24.140 33.980 0.800 1.580 0.040 0.010 0.001 0.030
6120.000 1750.000 177.000 0.410 0.007 0.020 24.140 33.980 0.800 1.580 0.040 0.010 0.001 0.030
5003.000 1800.000 132.000 0.410 0.007 0.020 24.140 33.980 0.800 1.580 0.040 0.010 0.001 0.030
3560.000 1750.000 483.000 0.410 0.013 0.017 25.100 35.430 0.830 1.710 0.080 0.050 0.001 0.050
3516.000 1900.000 634.000 0.410 0.009 0.014 24.900 35.700 1.060 1.470 0.066 0.000 0.005 0.100
5013.000 1800.000 322.000 0.390 0.009 0.018 25.100 35.800 1.120 1.760 0.070 0.000 0.005 0.140
3015.000 1950.000 591.000 0.390 0.010 0.013 25.700 35.500 1.170 1.620 0.065 0.000 0.005 0.110
1550.000 1850.000 33.000 0.410 0.005 0.010 24.900 35.200 1.040 1.530 0.052 0.000 0.005 0.060
2994.000 1950.000 336.000 0.400 0.009 0.020 25.840 35.240 0.920 1.500 0.060 0.050 0.001 0.040
3002.000 1950.000 90.000 0.440 0.008 0.020 24.020 33.510 0.870 1.760 0.090 0.010 0.001 0.000
3007.000 1950.000 72.000 0.390 0.011 0.018 25.800 35.920 0.830 1.480 0.080 0.050 0.001 0.040
3015.000 1950.000 83.000 0.420 0.008 0.023 25.070 33.930 0.810 1.620 0.090 0.060 0.001 0.060
4502.000 1900.000 44.000 0.420 0.010 0.017 25.180 35.380 0.830 1.670 0.070 0.050 0.001 0.040
3512.000 1800.000 2436.000 0.460 0.013 0.020 24.380 35.130 0.790 0.850 0.090 0.050 0.001 0.060
5500.000 1850.000 294.000 0.450 0.012 0.018 24.790 34.570 0.830 0.840 0.018 0.060 0.001 0.090
4193.000 1800.000 1790.000 0.430 0.012 0.019 23.740 35.030 0.770 0.840 0.080 0.050 0.001 0.060
3015.000 1950.000 87.000 0.400 0.010 0.018 25.950 34.930 0.890 1.730 0.080 0.050 0.002 0.040
3007.000 1950.000 115.000 0.380 0.011 0.019 26.590 33.830 1.250 1.420 0.080 0.050 0.001 0.050
5972.000 1800.000 177.000 0.470 0.011 0.020 25.850 35.250 0.890 1.120 0.090 0.040 0.001 0.290
4565.000 1900.000 32.000 0.430 0.008 0.019 23.380 33.960 0.770 1.680 0.070 0.010 0.001 0.030
2813.000 1900.000 127.000 0.070 0.010 0.016 21.980 34.340 0.700 1.720 0.080 0.110 0.001 0.000
2819.000 1900.000 36.000 0.070 0.009 0.016 22.020 34.750 0.710 1.710 0.080 0.110 0.001 0.000
3569.000 1750.000 946.000 0.096 0.011 0.016 19.470 32.800 0.690 1.020 0.110 0.100 0.001 0.000
5981.000 1600.000 225.000 0.090 0.011 0.016 19.970 32.350 0.730 1.050 0.110 0.110 0.001 0.000
2984.000 1750.000 517.000 0.110 0.010 0.015 19.630 32.380 0.710 1.010 0.110 0.100 0.001 0.000
2005.000 1850.000 636.000 0.090 0.011 0.015 19.670 33.330 0.710 1.080 0.150 0.120 0.001 0.000
4034.000 1800.000 54.000 0.850 0.010 0.016 20.060 32.370 0.650 0.930 0.100 0.110 0.001 0.000
4500.000 1700.000 299.000 0.085 0.010 0.016 20.060 32.370 0.650 0.930 0.100 0.110 0.001 0.000
2240.000 1950.000 212.000 0.090 0.011 0.015 20.010 32.970 0.740 1.000 0.050 0.120 0.001 0.000
2005.000 2000.000 595.000 0.400 0.007 0.017 33.280 46.940 1.420 1.740 0.030 0.030 0.004 0.080
5995.000 1800.000 28.000 0.400 0.007 0.016 31.750 46.360 1.410 1.650 0.030 0.030 0.004 0.080  
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second.xls 

PSI DEGREE F HOURS C S P Cr Ni Mn Si Cu Mo Pb Co
3008.000 1800.000 148.000 0.070 0.009 0.016 25.180 35.250 0.710 1.690 0.040 0.040 0.001 0.080
5012.000 1700.000 32.000 0.070 0.009 0.016 25.180 35.250 0.710 1.690 0.040 0.040 0.001 0.080
3000.000 1750.000 838.000 0.130 0.009 0.018 24.270 34.140 0.730 1.630 0.090 0.020 0.001 0.040
6000.000 1600.000 140.000 0.110 0.009 0.019 24.240 34.280 0.690 1.640 0.090 0.020 0.001 0.004
4303.000 1700.000 471.000 0.110 0.008 0.017 24.190 34.180 0.800 1.640 0.080 0.030 0.001 0.040
2700.000 1742.000 424.000 0.080 0.006 0.019 23.210 34.330 0.840 1.650 0.020 0.010 0.001 0.020
6019.000 1700.000 50.000 0.160 0.010 0.018 25.350 34.830 1.000 1.770 0.080 0.050 0.001 0.040
2505.000 1900.000 246.000 0.180 0.010 0.017 24.770 35.320 0.990 1.760 0.080 0.050 0.001 0.040
3007.000 1800.000 1175.000 0.160 0.011 0.019 25.800 34.500 0.960 1.610 0.090 0.050 0.001 0.050
3998.000 1850.000 614.000 0.410 0.007 0.020 24.140 33.980 0.800 1.580 0.040 0.010 0.001 0.030
6120.000 1750.000 177.000 0.410 0.007 0.020 24.140 33.980 0.800 1.580 0.040 0.010 0.001 0.030
5003.000 1800.000 132.000 0.410 0.007 0.020 24.140 33.980 0.800 1.580 0.040 0.010 0.001 0.030
3560.000 1750.000 483.000 0.410 0.013 0.017 25.100 35.430 0.830 1.710 0.080 0.050 0.001 0.050
3516.000 1900.000 634.000 0.410 0.009 0.014 24.900 35.700 1.060 1.470 0.066 0.000 0.005 0.100
5013.000 1800.000 322.000 0.390 0.009 0.018 25.100 35.800 1.120 1.760 0.070 0.000 0.005 0.140
3015.000 1950.000 591.000 0.390 0.010 0.013 25.700 35.500 1.170 1.620 0.065 0.000 0.005 0.110
1550.000 1850.000 33.000 0.410 0.005 0.010 24.900 35.200 1.040 1.530 0.052 0.000 0.005 0.060
2994.000 1950.000 336.000 0.400 0.009 0.020 25.840 35.240 0.920 1.500 0.060 0.050 0.001 0.040
3002.000 1950.000 90.000 0.440 0.008 0.020 24.020 33.510 0.870 1.760 0.090 0.010 0.001 0.000
3007.000 1950.000 72.000 0.390 0.011 0.018 25.800 35.920 0.830 1.480 0.080 0.050 0.001 0.040
3015.000 1950.000 83.000 0.420 0.008 0.023 25.070 33.930 0.810 1.620 0.090 0.060 0.001 0.060
4502.000 1900.000 44.000 0.420 0.010 0.017 25.180 35.380 0.830 1.670 0.070 0.050 0.001 0.040
3512.000 1800.000 2436.000 0.460 0.013 0.020 24.380 35.130 0.790 0.850 0.090 0.050 0.001 0.060
5500.000 1850.000 294.000 0.450 0.012 0.018 24.790 34.570 0.830 0.840 0.018 0.060 0.001 0.090
4193.000 1800.000 1790.000 0.430 0.012 0.019 23.740 35.030 0.770 0.840 0.080 0.050 0.001 0.060
3015.000 1950.000 87.000 0.400 0.010 0.018 25.950 34.930 0.890 1.730 0.080 0.050 0.002 0.040
3007.000 1950.000 115.000 0.380 0.011 0.019 26.590 33.830 1.250 1.420 0.080 0.050 0.001 0.050
5972.000 1800.000 177.000 0.470 0.011 0.020 25.850 35.250 0.890 1.120 0.090 0.040 0.001 0.290
4565.000 1900.000 32.000 0.430 0.008 0.019 23.380 33.960 0.770 1.680 0.070 0.010 0.001 0.030
2813.000 1900.000 127.000 0.070 0.010 0.016 21.980 34.340 0.700 1.720 0.080 0.110 0.001 0.000
2819.000 1900.000 36.000 0.070 0.009 0.016 22.020 34.750 0.710 1.710 0.080 0.110 0.001 0.000
3569.000 1750.000 946.000 0.096 0.011 0.016 19.470 32.800 0.690 1.020 0.110 0.100 0.001 0.000
5981.000 1600.000 225.000 0.090 0.011 0.016 19.970 32.350 0.730 1.050 0.110 0.110 0.001 0.000
2984.000 1750.000 517.000 0.110 0.010 0.015 19.630 32.380 0.710 1.010 0.110 0.100 0.001 0.000
2005.000 1850.000 636.000 0.090 0.011 0.015 19.670 33.330 0.710 1.080 0.150 0.120 0.001 0.000
4500.000 1700.000 299.000 0.085 0.010 0.016 20.060 32.370 0.650 0.930 0.100 0.110 0.001 0.000
2240.000 1950.000 212.000 0.090 0.011 0.015 20.010 32.970 0.740 1.000 0.050 0.120 0.001 0.000
2005.000 2000.000 595.000 0.400 0.007 0.017 33.280 46.940 1.420 1.740 0.030 0.030 0.004 0.080
5995.000 1800.000 28.000 0.400 0.007 0.016 31.750 46.360 1.410 1.650 0.030 0.030 0.004 0.080
1600.000 1900.000 6331.000 0.370 0.009 0.018 34.340 45.420 1.040 1.300 0.020 0.020 0.004 0.080
1540.000 1900.000 10247.000 0.415 0.007 0.016 34.410 45.370 1.310 1.780 0.030 0.032 0.004 0.080
1796.000 2000.000 1297.000 0.424 0.008 0.016 32.650 44.610 1.370 1.710 0.040 0.032 0.004 0.080
3007.000 1900.000 474.000 0.402 0.008 0.018 33.770 45.530 1.330 1.610 0.030 0.034 0.005 0.080
1711.000 2075.000 140.000 0.420 0.005 0.016 35.280 45.170 1.510 1.810 0.040 0.026 0.004 0.090
1800.000 2000.000 434.000 0.440 0.007 0.018 32.820 43.920 1.380 1.910 0.030 0.030 0.005 0.090
3506.000 1850.000 183.000 0.433 0.007 0.016 32.370 45.090 1.340 1.710 0.040 0.032 0.004 0.090
1801.000 2000.000 534.000 0.400 0.007 0.016 32.080 45.570 1.270 1.710 0.040 0.030 0.004 0.080  
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task1.xls 

Task1 results (3-criteria optimization)
predicted values

PSI DEGREE F HOURS C S P Cr Ni Mn Si Cu Mo Pb Co
10026.000 1500.000 281.200 0.538 0.014 0.017 36.447 51.122 0.904 2.124 0.074 0.019 0.004 0.143

9904.000 1605.300 48.706 0.385 0.002 0.028 32.668 44.252 1.352 2.146 0.030 0.011 0.003 0.035
9784.200 1513.800 266.990 0.438 0.011 0.018 31.412 39.144 0.585 1.551 0.039 0.036 0.004 0.197
9673.300 1595.900 529.110 0.361 0.002 0.031 31.512 43.690 1.253 2.123 0.028 0.010 0.003 0.119
9652.700 1619.200 50.405 0.390 0.002 0.027 29.012 43.306 1.353 2.065 0.036 0.004 0.004 0.126
9572.200 1522.600 694.200 0.436 0.009 0.018 36.417 44.331 0.927 1.491 0.051 0.024 0.004 0.090
9507.400 1500.500 2206.500 0.206 0.001 0.031 33.271 34.496 0.673 1.246 0.028 0.031 0.005 0.112
9407.000 1589.200 1039.800 0.380 0.002 0.031 30.283 43.151 1.204 2.091 0.032 0.011 0.004 0.093
9324.200 1510.600 2336.700 0.266 0.005 0.028 30.759 36.054 0.811 1.246 0.034 0.019 0.005 0.085
9283.600 1639.800 47.878 0.424 0.001 0.025 33.941 42.592 1.513 2.107 0.031 0.011 0.003 0.068
9010.000 1527.000 2615.200 0.365 0.008 0.027 32.662 32.200 0.829 0.854 0.035 0.029 0.005 0.126
8948.300 1658.900 57.309 0.277 0.001 0.023 32.759 42.647 1.389 1.766 0.017 0.001 0.005 0.224
8873.700 1579.700 2056.200 0.377 0.002 0.030 30.446 43.111 1.192 2.097 0.029 0.009 0.004 0.095
8723.300 1659.000 597.530 0.391 0.002 0.027 27.386 41.571 1.228 1.961 0.038 0.002 0.005 0.162
8626.600 1547.200 2905.000 0.297 0.010 0.021 33.315 32.924 0.734 1.085 0.034 0.037 0.005 0.083
8448.100 1687.100 62.989 0.308 0.001 0.022 31.357 42.535 1.385 1.746 0.020 0.001 0.005 0.241
8269.500 1567.100 3210.100 0.382 0.006 0.023 28.820 32.699 0.738 1.161 0.047 0.021 0.005 0.117
8211.400 1588.800 1796.900 0.394 0.007 0.015 37.107 43.741 1.012 1.480 0.057 0.037 0.005 0.073
7852.200 1617.500 750.080 0.424 0.010 0.010 31.190 30.787 0.920 0.965 0.035 0.053 0.005 0.245
7839.100 1721.800 87.046 0.452 0.001 0.025 28.593 47.334 1.344 2.143 0.036 0.007 0.005 0.220
7773.600 1594.400 3772.500 0.504 0.012 0.031 37.092 22.335 0.669 0.605 0.061 0.002 0.005 0.113
7742.500 1612.300 2205.400 0.386 0.007 0.015 37.385 43.383 1.034 1.415 0.066 0.038 0.004 0.076
7679.000 1713.300 1046.900 0.408 0.002 0.027 26.755 41.150 1.278 1.902 0.041 0.000 0.005 0.172
7479.900 1742.000 78.522 0.454 0.001 0.025 27.513 47.439 1.418 2.148 0.033 0.006 0.004 0.220
7347.600 1616.200 4269.300 0.482 0.012 0.030 33.168 19.576 0.586 0.613 0.048 0.005 0.005 0.105
7095.000 1630.900 3458.700 0.444 0.014 0.022 32.770 39.724 1.120 0.528 0.017 0.056 0.005 0.163
7018.600 1748.200 1176.100 0.424 0.003 0.027 26.591 41.334 1.272 1.922 0.042 0.000 0.005 0.177
6951.800 1637.000 4506.900 0.479 0.013 0.029 32.796 19.442 0.607 0.615 0.044 0.002 0.005 0.093
6942.000 1658.700 2490.900 0.378 0.005 0.015 37.583 43.693 1.034 1.465 0.064 0.029 0.004 0.052
6928.500 1770.700 219.260 0.436 0.003 0.027 30.262 47.505 1.163 2.140 0.029 0.011 0.005 0.208
6701.300 1747.400 2307.700 0.425 0.003 0.027 26.577 41.088 1.247 1.892 0.041 0.001 0.005 0.177
6567.400 1790.900 228.650 0.433 0.001 0.029 30.775 48.076 1.116 2.146 0.032 0.006 0.005 0.215
6543.800 1658.900 4887.600 0.459 0.011 0.021 32.147 34.367 0.586 0.696 0.016 0.009 0.005 0.161
6216.900 1677.600 5398.100 0.469 0.012 0.026 37.684 30.185 0.730 0.605 0.037 0.007 0.004 0.093
6198.000 1805.100 622.650 0.463 0.002 0.026 29.804 47.702 1.142 2.145 0.028 0.011 0.005 0.203
5995.200 1774.400 3060.300 0.427 0.003 0.027 26.403 40.973 1.239 1.893 0.040 0.001 0.005 0.181
5904.400 1702.100 3822.500 0.379 0.007 0.015 37.687 43.153 1.026 1.405 0.064 0.036 0.004 0.073
5899.100 1829.000 204.060 0.455 0.002 0.028 31.724 48.259 1.159 2.149 0.029 0.012 0.005 0.206
5864.900 1695.500 5710.300 0.490 0.013 0.031 35.850 21.258 0.612 0.632 0.052 0.003 0.005 0.112
5692.400 1810.400 1953.000 0.457 0.002 0.028 27.300 46.506 1.130 2.127 0.031 0.009 0.005 0.207
5517.300 1714.300 6158.800 0.471 0.011 0.024 35.930 25.118 0.639 0.503 0.049 0.003 0.004 0.087
5448.200 1854.600 202.690 0.457 0.002 0.028 32.227 49.754 1.139 2.145 0.028 0.011 0.005 0.203
5081.600 1743.300 4583.200 0.367 0.007 0.017 36.489 42.305 0.941 1.375 0.052 0.029 0.005 0.080
5031.900 1741.100 6677.800 0.477 0.013 0.025 37.771 30.270 0.739 0.554 0.041 0.010 0.004 0.092
4990.400 1880.800 177.490 0.461 0.003 0.028 33.048 48.865 1.150 2.147 0.029 0.012 0.005 0.204  
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task2-6.xls 
Task2 results (T>=1600)

predicted values
PSI DEGREE F HOURS C S P Cr Ni Mn Si Cu Mo Pb Co

9965.300 1602.100 46.514 0.250 0.007 0.026 35.354 51.371 1.663 2.149 0.036 0.007 0.003 0.070
9637.800 1612.800 244.490 0.400 0.002 0.029 27.692 41.347 1.285 2.141 0.035 0.005 0.004 0.114
9340.700 1611.000 736.510 0.417 0.002 0.030 31.102 47.896 1.212 1.990 0.035 0.004 0.004 0.095
9078.300 1613.300 1216.600 0.406 0.003 0.029 29.749 43.656 1.195 2.083 0.034 0.005 0.003 0.145
8642.000 1610.200 1836.600 0.358 0.002 0.029 30.188 44.275 1.165 2.001 0.034 0.005 0.003 0.119
8212.700 1616.700 2433.400 0.383 0.003 0.029 30.050 43.051 1.099 2.150 0.034 0.006 0.003 0.132
7818.800 1625.800 2862.900 0.373 0.003 0.030 28.648 42.234 1.179 2.068 0.035 0.005 0.004 0.109
7647.300 1600.000 3969.200 0.476 0.012 0.030 32.423 21.258 0.585 0.645 0.050 0.005 0.005 0.100
6766.700 1647.300 4882.100 0.475 0.013 0.029 35.390 23.643 0.728 0.668 0.045 0.004 0.004 0.094
6427.400 1665.500 5239.100 0.479 0.013 0.028 35.184 24.357 0.714 0.625 0.044 0.004 0.004 0.096
5694.100 1704.900 5996.100 0.485 0.014 0.028 34.882 23.848 0.707 0.563 0.045 0.004 0.004 0.104
5264.900 1727.900 6437.600 0.484 0.014 0.027 35.093 24.183 0.702 0.579 0.044 0.005 0.004 0.107
4716.200 1757.600 7043.100 0.480 0.014 0.026 36.863 26.335 0.763 0.574 0.041 0.004 0.004 0.106
4230.900 1783.600 7526.900 0.493 0.014 0.026 35.402 25.756 0.698 0.531 0.042 0.005 0.004 0.118
3571.600 1818.700 8122.100 0.485 0.014 0.024 35.675 27.140 0.690 0.533 0.042 0.005 0.004 0.116
3075.100 1845.700 8702.500 0.487 0.013 0.021 37.782 29.576 0.682 0.479 0.038 0.007 0.004 0.123
2733.500 1864.700 9205.500 0.494 0.014 0.022 36.612 30.010 0.686 0.470 0.037 0.007 0.004 0.127
2279.200 1889.900 9824.400 0.497 0.014 0.019 37.886 34.216 0.685 0.426 0.034 0.009 0.004 0.130
2068.100 1902.200 10244.000 0.508 0.014 0.019 37.279 35.911 0.696 0.512 0.039 0.010 0.004 0.136
1706.100 1923.500 10946.000 0.519 0.013 0.015 39.290 41.969 0.691 0.188 0.020 0.013 0.004 0.120

Task3 results (T>=1800)
predicted values

PSI DEGREE F HOURS C S P Cr Ni Mn Si Cu Mo Pb Co
6425.400 1800.000 191.530 0.473 0.002 0.026 31.058 48.328 1.106 2.149 0.027 0.010 0.005 0.220
6261.900 1801.400 623.750 0.466 0.002 0.027 29.218 47.718 1.127 2.150 0.028 0.011 0.005 0.210
5956.800 1814.300 862.010 0.466 0.002 0.026 29.591 47.668 1.143 2.144 0.029 0.010 0.005 0.204
5949.700 1800.300 1675.100 0.455 0.002 0.028 27.377 46.291 1.140 2.135 0.030 0.009 0.005 0.208
5669.800 1801.000 2577.800 0.437 0.002 0.026 27.009 41.617 1.153 1.920 0.044 0.001 0.005 0.182
5405.900 1807.500 3107.300 0.435 0.003 0.026 27.038 41.715 1.138 1.919 0.045 0.001 0.005 0.180
5115.100 1809.000 4013.900 0.426 0.003 0.027 25.993 40.845 1.224 1.881 0.041 0.000 0.005 0.174
4762.700 1821.700 4434.500 0.425 0.003 0.027 25.728 40.685 1.227 1.891 0.042 0.000 0.005 0.172
4366.100 1837.000 4860.200 0.425 0.003 0.027 25.716 40.801 1.220 1.890 0.041 0.000 0.005 0.172
4015.000 1849.500 5228.400 0.422 0.003 0.028 25.223 40.455 1.239 1.880 0.041 0.000 0.005 0.171
3937.300 1800.000 7931.200 0.468 0.014 0.024 36.992 23.732 0.678 0.622 0.039 0.013 0.004 0.139
3735.000 1810.800 8101.800 0.467 0.014 0.024 37.436 24.445 0.693 0.562 0.039 0.011 0.004 0.142
3422.000 1828.000 8561.900 0.451 0.014 0.024 38.955 24.452 0.644 0.660 0.042 0.015 0.005 0.138
3086.900 1845.800 8807.500 0.480 0.014 0.024 37.627 27.069 0.670 0.513 0.034 0.010 0.004 0.152
2818.900 1860.300 9134.700 0.477 0.014 0.023 37.499 25.902 0.692 0.552 0.043 0.015 0.004 0.141
2617.900 1872.400 9618.800 0.483 0.014 0.023 38.635 29.616 0.749 0.453 0.032 0.012 0.004 0.128
2356.200 1886.400 9905.300 0.484 0.014 0.022 38.841 29.712 0.680 0.450 0.035 0.013 0.004 0.133
2064.100 1902.800 10323.000 0.492 0.014 0.020 38.913 30.629 0.680 0.461 0.031 0.011 0.004 0.127
1847.800 1915.100 10693.000 0.508 0.014 0.018 38.920 35.082 0.672 0.304 0.024 0.010 0.004 0.125
1721.100 1923.100 10941.000 0.526 0.013 0.016 39.529 43.995 0.676 0.219 0.021 0.012 0.004 0.111
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derivatives.xls 
examples of the derivatives evaluation

PSI DEGREE F HOURS C Cr Ni Mn Si Mo Cb W Ti
point 2930.400 2000.000 789.100 0.469 34.020 43.830 1.457 0.151 0.000 1.293 0.019 0.002
d(PSI)/dx -1072.000 6.188 -24.940 -987.700 10.910 -304.200 317.900 -157.200 31830.000
d(temp)/dx 78.260 -0.016 2.795 66.030 -10.980 -38.010 -25.170 19.880 -3529.000
d(HOURS)/dx) -484.100 3.040 -39.540 -954.400 -7.244 459.400 -36.990 -49.550 54850.000
point 2765.500 2000.400 1575.800 0.485 32.010 38.160 1.311 0.131 0.001 0.865 0.236 0.002
d(PSI)/dx -695.800 0.199 -14.190 -349.500 96.330 46.940 306.900 -226.100 18770.000
d(temp)/dx 56.660 -0.310 2.811 97.040 -3.788 -8.015 -20.110 26.840 -3150.000
d(HOURS)/dx) -274.100 20.940 -92.200 -3993.000 -305.100 -45.180 -308.200 3.188 91230.000
point 1913.700 2000.000 3190.500 0.475 35.450 48.050 0.985 2.137 0.013 0.612 0.461 0.017
d(PSI)/dx -2997.000 65.510 16.670 1368.000 107.700 -1144.000 -823.200 95.550 8023.000
d(temp)/dx -170.500 11.820 1.585 109.900 1.660 271.600 -114.300 -52.180 -260.300
d(HOURS)/dx) 22780.000 -893.400 -164.700 -11350.000 -508.100 -12890.000 8524.000 2208.000 -34190.000

point 2445.600 2050.000 156.900 0.216 39.280 44.170 1.468 1.651 0.128 1.125 0.085 0.070
d(PSI)/dx 2630.000 -7.484 -6.102 -584.400 669.700 -1590.000 153.000 1248.000 -3509.000
d(temp)/dx -218.700 1.626 0.685 69.730 -56.320 144.000 -39.250 -91.230 297.600
d(HOURS)/dx) 482.300 -11.000 -6.092 -579.700 120.400 -487.200 559.300 -22.270 284.400
point 2296.100 2050.300 495.200 0.208 39.360 43.960 1.398 1.877 0.129 1.191 0.065 0.072
d(PSI)/dx 1900.000 -10.130 -2.719 -340.800 499.300 -1192.000 52.970 977.400 -2581.000
d(temp)/dx -222.600 3.349 1.042 113.300 -58.660 171.800 -91.380 -72.940 217.200
d(HOURS)/dx) 2227.000 -39.400 -28.630 -2816.000 568.600 -2230.000 2616.000 -98.480 3323.000
point 2131.800 2050.500 883.900 0.259 39.530 45.820 1.341 1.339 0.127 1.182 0.107 0.086
d(PSI)/dx 1106.000 -7.663 -2.077 -284.500 266.600 -812.500 37.930 637.300 -2561.000
d(temp)/dx -134.600 3.084 1.588 279.000 -11.400 465.600 -148.500 -44.540 -52.820
d(HOURS)/dx) 1799.000 -71.480 -51.120 -7884.000 -83.900 -10410.000 4921.000 -46.350 8276.000
point 1923.900 2050.000 1155.000 0.266 39.570 47.870 1.365 1.062 0.127 1.093 0.068 0.085
d(PSI)/dx 439.900 0.655 -2.716 -197.100 87.950 -422.800 85.760 141.200 -1807.000
d(temp)/dx 111.400 3.287 2.590 725.000 128.600 1393.000 -246.500 -7.686 -410.800
d(HOURS)/dx) -3540.000 -88.610 -64.530 -18350.000 -3437.000 -34030.000 6333.000 -32.070 13280.000

 
 

 52



 
distan.xls 

PSI DEGREE F HOURS C S P Cr Ni Mn Si Cu Mo Pb Co
10023.000 1600.000 23.000 0.120 0.008 0.019 33.930 44.590 0.910 1.450 0.040 0.020 0.004 0.240
6030.000 1800.000 13.000 0.120 0.008 0.019 33.930 44.590 0.910 1.450 0.040 0.020 0.004 0.240

1275.000 1950.000 12176.000 0.390 0.009 0.018 34.790 44.680 1.020 1.310 0.020 0.020 0.004 0.080
9516.000 1500.000 2200.000 0.380 0.008 0.019 34.760 44.700 1.030 1.340 0.020 0.020 0.004 0.080

3512.000 1800.000 2436.000 0.460 0.013 0.020 24.380 35.130 0.790 0.850 0.090 0.050 0.001 0.060
5521.000 1850.000 106.000 0.460 0.011 0.019 24.360 35.100 0.830 0.840 0.090 0.050 0.001 0.060

9516.000 1500.000 2200.000 0.380 0.008 0.019 34.760 44.700 1.030 1.340 0.020 0.020 0.004 0.080
5303.000 1700.000 1536.000 0.390 0.009 0.018 34.740 44.600 1.020 1.340 0.020 0.020 0.004 0.080

2500.000 2050.000 18.000 0.390 0.009 0.018 34.680 45.810 1.080 1.330 0.020 0.020 0.004 0.080
3007.000 1800.000 10646.000 0.380 0.009 0.018 34.660 45.710 1.130 1.330 0.020 0.020 0.004 0.080  
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Appendix 2 
 
v9-task1-3criteria.xls 

Task1 results (9 variables, 3-criteria optimization)
predicted values

PSI DEGREE F HOURS C Cr Ni Mn Si Mo Cb W Ti
8274.310 1703.650 663.147 0.600 17.561 35.000 2.000 2.000 0.025 0.947 0.328 0.053
8129.430 1710.150 630.976 0.600 17.501 34.991 2.000 1.965 0.000 0.847 0.412 0.066
7931.390 1709.050 764.192 0.473 17.501 34.995 1.974 1.740 0.000 0.077 0.026 0.008
7810.760 1723.040 606.118 0.489 17.586 34.987 1.994 1.990 0.002 0.565 0.359 0.056
7647.530 1714.990 814.611 0.382 21.811 34.009 1.996 0.899 0.164 0.081 0.159 0.042
7506.380 1736.980 557.099 0.490 17.581 34.986 1.990 1.961 0.001 0.429 0.331 0.052
7255.740 1717.120 984.422 0.115 18.890 35.000 1.879 1.987 0.036 0.003 0.094 0.009
7236.600 1750.220 492.057 0.507 17.608 34.989 1.994 1.994 0.001 0.621 0.415 0.062
7028.240 1720.810 1045.850 0.096 19.077 35.000 1.857 1.984 0.039 0.002 0.051 0.009
6920.060 1765.040 437.159 0.492 17.521 35.000 2.000 1.993 0.003 0.490 0.403 0.057
6894.960 1756.870 842.302 0.459 28.418 34.855 2.000 0.505 0.044 0.797 0.236 0.106
6578.800 1780.680 379.374 0.482 17.579 34.987 1.993 1.973 0.000 0.560 0.378 0.067
6550.480 1732.950 1103.230 0.107 29.988 34.876 1.997 0.099 0.019 0.335 0.144 0.002
6339.560 1764.400 1306.050 0.110 29.423 34.907 1.566 0.414 0.014 1.750 0.047 0.103
6246.240 1796.270 319.820 0.479 17.588 34.986 1.993 1.982 0.001 0.481 0.347 0.068
6101.700 1800.080 1002.590 0.467 28.388 34.846 1.999 0.487 0.040 0.838 0.233 0.108
6095.890 1682.900 3301.220 0.591 29.737 34.873 1.061 0.629 0.012 2.977 0.149 0.051
6067.340 1774.510 1559.290 0.112 29.440 34.912 1.569 0.416 0.014 1.754 0.046 0.111
5973.000 1689.870 3490.630 0.593 29.729 34.860 1.068 0.625 0.010 2.959 0.152 0.066
5928.580 1811.050 597.233 0.432 27.984 34.814 2.000 0.473 0.039 0.660 0.190 0.115
5877.140 1703.270 3039.180 0.591 29.757 34.880 1.088 0.637 0.013 2.973 0.150 0.035
5761.330 1785.590 1865.250 0.113 29.424 34.939 1.581 0.411 0.013 1.789 0.041 0.115
5747.020 1700.000 3562.820 0.565 29.797 34.418 0.911 0.970 0.015 2.654 0.117 0.072
5736.820 1820.250 222.693 0.481 17.589 34.984 1.994 1.989 0.000 0.484 0.429 0.064
5693.350 1719.870 2876.750 0.592 29.759 34.881 1.083 0.633 0.013 2.971 0.150 0.029
5546.560 1717.740 3705.100 0.591 29.756 34.866 1.103 0.510 0.011 2.868 0.155 0.074
5504.470 1737.510 2706.010 0.592 29.757 34.883 1.084 0.633 0.014 2.969 0.151 0.025
5486.630 1795.400 2137.350 0.116 29.474 34.926 1.587 0.416 0.014 1.764 0.048 0.116
5475.820 1836.500 528.504 0.432 27.789 34.818 2.000 0.401 0.037 0.652 0.177 0.118
5388.640 1808.900 1257.440 0.097 29.219 34.838 1.681 0.395 0.009 1.550 0.005 0.066
5211.910 1765.240 2516.080 0.592 29.724 34.871 1.127 0.637 0.014 2.893 0.158 0.022
5210.020 1734.900 3903.080 0.568 29.817 34.541 1.031 0.902 0.016 2.453 0.136 0.076
5102.560 1850.110 109.813 0.322 29.948 35.000 1.991 0.224 0.002 0.402 0.160 0.114
5033.020 1751.660 3505.250 0.498 29.794 34.265 0.875 1.134 0.020 2.218 0.103 0.071
5028.200 1812.180 2607.820 0.117 29.459 34.956 1.604 0.414 0.014 1.835 0.044 0.126
4977.350 1744.590 3962.320 0.565 29.759 34.498 0.931 0.932 0.017 2.534 0.113 0.093
4913.550 1874.080 677.530 0.432 27.765 34.807 2.000 0.436 0.037 0.689 0.176 0.117
4789.680 1875.170 193.954 0.322 29.912 34.967 1.983 0.238 0.002 0.491 0.142 0.096
4768.270 1786.700 3308.170 0.588 29.715 34.823 1.323 0.346 0.016 2.650 0.172 0.054
4737.330 1875.650 1271.080 0.465 28.352 34.856 2.000 0.515 0.040 0.854 0.225 0.111
4673.030 1761.790 4092.990 0.546 29.777 34.352 0.920 1.054 0.018 2.344 0.111 0.095
4656.170 1838.600 1821.900 0.104 29.155 34.867 1.695 0.395 0.009 1.566 0.015 0.070
4565.810 1829.350 3059.410 0.118 29.368 34.961 1.638 0.410 0.013 1.791 0.038 0.124
4474.440 1796.310 3955.930 0.588 29.741 34.829 1.295 0.400 0.014 2.596 0.176 0.076
4356.820 1906.820 149.790 0.325 30.000 34.981 1.979 0.243 0.002 0.400 0.106 0.099  
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v9-task2-6.xls 
9 variables, 2 criteria

Task2 results (T>=1700)
predicted values

PSI DEGREE F HOURS C Cr Ni Mn Si Mo Cb W Ti
8275.420 1703.680 662.202 0.600 17.501 34.997 2.000 2.000 0.027 0.891 0.338 0.050
8023.120 1706.750 745.831 0.296 17.500 35.000 2.000 2.000 0.034 0.103 0.202 0.000
7697.490 1711.600 838.384 0.309 19.036 34.969 1.886 1.964 0.032 0.355 0.181 0.000
7129.080 1720.120 1002.590 0.263 20.558 34.956 1.788 1.911 0.031 0.391 0.138 0.008
6797.450 1725.080 1099.440 0.172 20.253 34.929 1.771 1.842 0.035 0.142 0.111 0.000
6412.000 1762.290 1217.630 0.108 29.434 34.919 1.558 0.417 0.014 1.764 0.045 0.110
6121.770 1772.620 1511.750 0.109 29.435 34.928 1.578 0.400 0.014 1.762 0.042 0.111
5913.620 1779.810 1713.890 0.115 29.443 34.925 1.566 0.404 0.014 1.756 0.043 0.111
5913.110 1700.010 3067.320 0.590 29.757 34.882 1.082 0.634 0.013 2.976 0.149 0.036
5850.120 1700.500 3307.400 0.588 29.811 34.632 1.063 0.678 0.014 2.823 0.139 0.048
5635.270 1712.710 3644.060 0.589 29.800 34.611 1.118 0.674 0.015 2.769 0.157 0.066
5307.990 1731.610 3803.440 0.527 29.830 34.470 1.088 1.000 0.016 2.314 0.131 0.059
5035.530 1748.000 3956.990 0.524 29.829 34.471 1.096 0.974 0.016 2.228 0.129 0.066
4474.810 1778.190 4223.300 0.488 29.802 34.473 1.068 1.039 0.018 2.042 0.106 0.079
4013.080 1795.190 4288.180 0.536 29.761 34.240 0.814 1.120 0.019 2.240 0.085 0.112
3575.970 1818.270 4417.390 0.555 29.735 34.237 0.773 1.119 0.020 2.347 0.079 0.130
3184.930 1842.420 4555.500 0.538 29.742 34.237 0.828 1.130 0.020 2.137 0.079 0.136
2792.840 1858.490 4665.120 0.562 29.657 34.232 0.684 1.124 0.021 2.379 0.075 0.162
2481.880 1873.330 4765.630 0.571 29.650 34.206 0.620 1.119 0.022 2.361 0.059 0.181
2131.870 1885.280 4884.960 0.576 29.639 34.150 0.380 1.080 0.024 2.454 0.031 0.205

Task3 results (T>=1800)
predicted values

PSI DEGREE F HOURS C Cr Ni Mn Si Mo Cb W Ti
6141.080 1800.010 901.859 0.460 28.381 34.842 2.000 0.491 0.041 0.794 0.223 0.108
6041.130 1800.310 1127.780 0.477 28.315 34.837 1.998 0.490 0.037 0.880 0.243 0.110
5796.800 1813.340 1188.730 0.478 28.287 34.838 2.000 0.473 0.038 0.878 0.239 0.110
5506.780 1827.620 1309.470 0.482 28.286 34.837 1.998 0.488 0.037 0.892 0.239 0.110
5505.600 1800.000 1631.640 0.097 29.213 34.839 1.688 0.393 0.010 1.555 0.006 0.077
5409.520 1800.010 2075.810 0.101 29.219 34.907 1.671 0.397 0.014 1.721 0.020 0.094
5324.280 1801.690 2279.310 0.110 29.263 34.861 1.635 0.401 0.012 1.761 0.024 0.105
5107.830 1808.360 2520.120 0.123 29.601 34.999 1.568 0.399 0.023 2.055 0.052 0.114
4867.160 1816.810 2761.960 0.127 29.574 34.994 1.568 0.404 0.023 2.055 0.055 0.114
4559.610 1827.700 3090.900 0.132 29.657 35.000 1.558 0.404 0.026 2.143 0.062 0.124
4249.600 1838.450 3431.950 0.139 29.706 35.000 1.547 0.407 0.029 2.244 0.071 0.131
4249.580 1800.000 4071.930 0.529 29.891 34.183 1.132 1.203 0.021 2.197 0.087 0.089
4019.050 1800.000 4302.840 0.541 29.757 34.246 0.922 1.165 0.020 2.193 0.098 0.109
3776.290 1810.390 4372.190 0.539 29.727 34.252 0.852 1.165 0.020 2.230 0.102 0.119
3472.350 1823.500 4456.070 0.548 29.692 34.265 0.759 1.150 0.020 2.282 0.100 0.131
3005.130 1844.610 4591.870 0.563 29.645 34.270 0.634 1.107 0.020 2.344 0.075 0.150
2730.370 1857.570 4682.780 0.562 29.604 34.271 0.573 1.108 0.020 2.362 0.086 0.161
2525.750 1866.260 4741.220 0.568 29.560 34.232 0.473 1.117 0.022 2.467 0.059 0.174
2313.750 1876.830 4828.410 0.572 29.578 34.187 0.453 1.088 0.023 2.457 0.051 0.188
2138.880 1885.150 4881.980 0.579 29.609 34.166 0.389 1.085 0.023 2.459 0.037 0.206  

 

 55



v8-task1-3criteria.xls 
Task1 results (8 variables, 3-criteria optimization)

predicted values
PSI DEGREE F HOURS C Cr Ni Mn Si Mo Cb W

8248.570 1704.120 668.905 0.600 29.929 34.267 2.000 2.000 0.130 1.006 0.428
8144.770 1708.140 648.721 0.596 29.871 34.680 1.983 2.000 0.127 0.768 0.646
7923.950 1719.370 660.519 0.596 29.960 33.687 1.997 1.965 0.125 0.510 0.206
7822.790 1711.580 766.137 0.527 28.607 34.239 1.828 1.872 0.147 0.617 0.387
7710.620 1730.670 638.267 0.598 29.961 33.662 1.997 1.955 0.126 0.516 0.198
7635.370 1715.210 814.950 0.412 29.913 34.902 2.000 0.704 0.071 0.553 0.230
7524.770 1740.580 618.000 0.597 29.960 33.560 1.998 1.946 0.125 0.518 0.191
7424.140 1717.180 896.306 0.163 29.962 34.999 1.992 1.269 0.128 0.261 0.197
7306.380 1752.220 594.266 0.597 29.958 33.579 1.997 1.946 0.126 0.516 0.186
7203.630 1721.320 943.310 0.218 30.000 35.000 1.922 1.159 0.141 0.223 0.204
7066.010 1765.250 565.428 0.598 29.940 33.594 2.000 1.954 0.126 0.516 0.182
6860.370 1747.030 604.542 0.095 26.231 33.564 1.913 1.491 0.116 0.157 0.747
6785.340 1742.660 869.508 0.529 29.661 34.801 1.915 0.298 0.000 0.058 0.017
6777.630 1726.720 1050.210 0.022 26.251 33.147 1.797 1.823 0.139 0.037 0.367
6776.510 1780.610 534.999 0.597 29.962 33.595 1.997 1.951 0.126 0.516 0.178
6531.730 1793.850 503.541 0.597 29.933 33.567 1.999 1.967 0.124 0.514 0.174
6414.120 1736.630 1105.390 0.151 27.524 33.814 1.763 1.029 0.179 0.001 0.235
6334.730 1804.320 485.062 0.597 29.959 33.615 1.997 1.951 0.126 0.515 0.172
6168.210 1741.250 1180.100 0.116 29.744 33.936 1.851 0.361 0.071 0.126 0.137
6066.700 1818.460 455.538 0.596 29.972 33.581 1.997 1.960 0.125 0.528 0.172
6017.910 1759.060 939.977 0.340 24.097 34.091 1.469 0.974 0.198 0.000 0.389
5870.780 1830.610 416.898 0.595 29.948 33.416 1.998 1.926 0.124 0.381 0.130
5832.970 1746.530 1283.430 0.034 29.620 33.195 1.861 0.069 0.022 0.077 0.070
5807.550 1802.390 609.827 0.301 29.690 34.441 1.991 0.844 0.173 0.228 0.136
5633.480 1772.370 1054.550 0.123 29.826 32.783 1.878 0.038 0.111 0.125 0.102
5617.510 1750.950 1329.860 0.001 29.725 33.125 1.812 0.021 0.002 0.067 0.044
5605.550 1843.270 405.104 0.598 29.964 33.601 1.998 1.949 0.126 0.526 0.166
5299.080 1812.460 827.645 0.560 28.779 34.902 1.440 1.421 0.015 0.223 0.017
5274.540 1863.110 346.450 0.596 29.947 33.524 1.996 1.926 0.125 0.388 0.125
5248.610 1760.990 1291.260 0.000 29.724 33.086 1.680 0.001 0.001 0.014 0.014
5026.930 1766.190 1237.520 0.000 29.805 33.044 1.656 0.014 0.007 0.025 0.019
5021.020 1876.880 313.182 0.596 29.955 33.409 1.996 1.935 0.124 0.384 0.121
5011.280 1843.960 474.805 0.309 29.605 34.467 1.983 0.858 0.172 0.240 0.126
4898.060 1843.260 799.489 0.567 28.636 34.904 1.438 1.436 0.015 0.275 0.015
4803.490 1773.080 1176.640 0.003 29.850 33.002 1.648 0.002 0.012 0.001 0.005
4796.310 1884.170 175.736 0.523 29.065 34.899 1.697 1.494 0.000 0.205 0.016
4688.130 1806.950 1246.470 0.588 27.301 26.373 0.001 0.234 0.043 2.005 0.295
4566.720 1871.860 743.104 0.569 28.962 34.911 1.414 1.506 0.017 0.273 0.014
4510.460 1905.150 256.458 0.578 29.825 33.558 1.967 1.778 0.110 0.298 0.082
4485.580 1806.270 1448.400 0.597 27.367 25.000 0.005 0.200 0.046 2.322 0.261
4442.960 1833.930 1624.430 0.573 29.717 34.985 1.119 1.358 0.000 1.654 0.000
4408.660 1831.300 1847.040 0.568 29.786 34.985 1.141 1.357 0.001 1.641 0.001
4307.460 1881.030 349.177 0.391 28.979 34.783 1.932 0.878 0.187 0.308 0.140
4279.590 1914.780 80.580 0.599 29.431 33.770 1.818 1.773 0.002 0.224 0.001
4110.920 1844.570 2114.010 0.576 29.599 34.985 1.171 1.357 0.000 1.606 0.000  
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v8-task2-6.xls 
8 variables, 2 criteria

Task2 results (T>=1700)
predicted values

PSI DEGREE F HOURS C Cr Ni Mn Si Mo Cb W
8248.750 1704.130 668.672 0.600 29.884 34.281 2.000 2.000 0.129 1.018 0.428
8000.820 1708.470 725.090 0.413 29.085 34.573 2.000 1.498 0.172 0.710 0.379
7734.930 1712.260 801.385 0.337 28.767 34.538 1.917 1.653 0.164 0.569 0.343
7310.130 1717.640 931.917 0.198 27.649 34.484 1.825 1.962 0.159 0.370 0.327
6736.920 1725.750 1097.380 0.095 27.222 34.191 1.744 1.934 0.134 0.204 0.296
6312.590 1733.060 1202.470 0.050 27.075 33.948 1.689 1.762 0.123 0.044 0.258
5796.400 1745.440 1269.060 0.014 26.499 33.761 1.588 1.341 0.095 0.052 0.253
5503.170 1753.510 1345.360 0.000 29.176 33.201 1.753 0.001 0.000 0.076 0.045
4961.220 1792.520 1662.750 0.580 30.000 34.985 1.038 1.355 0.000 2.455 0.001
4744.980 1808.150 1795.980 0.578 29.983 34.985 1.121 1.355 0.000 1.867 0.000
4530.120 1821.410 1987.860 0.579 29.966 34.985 1.144 1.356 0.000 1.638 0.000
4227.930 1834.170 2271.190 0.582 29.865 34.985 1.171 1.356 0.000 1.621 0.000
3991.870 1845.820 2505.260 0.585 29.809 34.985 1.190 1.357 0.000 1.537 0.000
3788.570 1855.190 2647.330 0.585 29.749 34.985 1.207 1.357 0.000 1.523 0.000
3578.670 1864.560 2874.690 0.595 29.618 34.985 1.223 1.359 0.000 1.510 0.000
3334.390 1876.230 3168.740 0.598 29.606 34.985 1.246 1.360 0.000 1.410 0.000
3172.780 1883.770 3343.890 0.600 29.603 34.985 1.264 1.361 0.001 1.355 0.000
2981.340 1893.640 3649.820 0.600 29.762 34.985 1.284 1.362 0.001 1.191 0.000
2910.290 1897.950 3826.280 0.600 29.982 34.986 1.289 1.364 0.001 1.076 0.000
2739.240 1909.360 3901.340 0.600 30.000 34.986 1.312 1.364 0.001 0.967 0.000

Task3 results (T>=1800)
predicted values

PSI DEGREE F HOURS C Cr Ni Mn Si Mo Cb W
6418.850 1800.010 493.920 0.599 29.963 33.623 2.000 1.939 0.125 0.514 0.172
6225.470 1800.090 572.903 0.592 29.989 33.767 1.871 1.878 0.124 0.572 0.179
5875.360 1800.090 606.422 0.311 29.701 34.474 1.997 0.862 0.175 0.242 0.140
5671.190 1800.040 718.373 0.548 29.207 34.915 1.533 1.467 0.019 0.089 0.009
5451.030 1800.200 826.364 0.550 29.195 34.917 1.486 1.471 0.020 0.002 0.009
5140.440 1804.740 828.854 0.587 27.375 26.602 0.000 0.161 0.047 2.014 0.302
4939.320 1805.790 1014.230 0.587 27.376 26.569 0.003 0.197 0.045 2.002 0.301
4939.300 1800.010 1631.260 0.589 30.000 34.985 1.091 1.360 0.000 1.907 0.000
4853.750 1802.230 1778.200 0.588 30.000 34.985 1.113 1.360 0.000 1.878 0.000
4585.920 1815.270 2069.250 0.587 30.000 34.985 1.145 1.360 0.000 1.701 0.000
4407.900 1825.140 2318.330 0.598 29.999 34.985 1.160 1.356 0.000 1.555 0.000
4213.520 1832.240 2572.510 0.600 30.000 34.985 1.178 1.356 0.000 1.547 0.000
4022.590 1840.150 2753.700 0.600 30.000 34.985 1.193 1.356 0.000 1.544 0.000
3774.860 1851.520 2955.990 0.600 29.999 34.985 1.213 1.355 0.000 1.517 0.000
3609.410 1859.770 3108.980 0.600 29.996 34.985 1.226 1.354 0.000 1.463 0.000
3427.430 1868.780 3288.330 0.600 29.996 34.985 1.242 1.356 0.000 1.397 0.000
3258.610 1877.950 3506.670 0.600 29.996 34.985 1.257 1.358 0.000 1.278 0.000
3130.070 1885.290 3656.060 0.600 29.994 34.985 1.268 1.359 0.000 1.184 0.000
2907.130 1898.370 3849.500 0.600 29.997 34.984 1.291 1.365 0.000 1.048 0.000
2750.950 1908.730 3896.630 0.600 29.997 34.984 1.312 1.364 0.000 0.964 0.000  
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